Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
30.09.2022
LICENSE
Copyright (c) 2024 Ruisen Jiang, Dawei Hu, Steven I-Jy Chien, Qian Sun, Xue Wu

Predicting Bus Travel Time with Hybrid Incomplete Data – A Deep Learning Approach

Authors:

Ruisen Jiang
School of Transportation Engineering, Chang'an University

Dawei Hu
School of Transportation Engineering, Chang'an University

Steven I-Jy Chien
School of Transportation Engineering, Chang’an University

Qian Sun
School of Transportation Engineering, Chang'an University,

Xue Wu
School of Transportation Engineering, Chang'an University

Keywords:bus travel time prediction, GPS data, electronic smart card data, long short-term memory model, genetic algorithm

Abstract

The application of predicting bus travel time with re-al-time information, including Global Positioning System (GPS) and Electronic Smart Card (ESC) data is effec-tive to advance the level of service by reducing wait time and improving schedule adherence. However, missing information in the data stream is inevitable for various reasons, which may seriously affect prediction accuracy. To address this problem, this research proposes a Long Short-Term Memory (LSTM) model to predict bus travel time, considering incomplete data. To improve the model performance in terms of accuracy and efficiency, a Genet-ic Algorithm (GA) is developed and applied to optimise hyperparameters of the LSTM model. The model perfor-mance is assessed by simulation and real-world data. The results suggest that the proposed approach with hybrid data outperforms the approaches with ESC and GPS data individually. With GA, the proposed model outperforms the traditional one in terms of lower Root Mean Square Error (RMSE). The prediction accuracy with various com-binations of ESC and GPS data is assessed. The results can serve as a guideline for transit agencies to deploy GPS devices in a bus fleet considering the market penetration of ESC.

References

  1. Dulebenets MA. A Delayed Start Parallel Evolutionary Algorithm for just-in-time truck scheduling at a cross-docking facility. International Journal of Production Economics. 2019;212: 236-258. doi: 10.1016/j.ijpe.2019.02.017.

    Pasha J, et al. An integrated optimization method for tactical-level planning in liner shipping with heterogeneous ship fleet and environmental considerations. Advanced Engineering Informatics. 2021;48: 101299. doi: 10.1016/j.aei.2021.101299.

    Belokurov V, Spodarev R, Belokurov S. Determining passenger traffic as important factor in urban public transport system. Transportation Research Procedia. 2020;50: 52-58. doi: 10.1016/j.trpro.2020.10.007.

    Kağan Albayrak MB, Özcan İÇ, Dobruszkes F. The determinants of air passenger traffic at Turkish airports. Journal of Air Transport Management. 2020;86: 101818. doi: 10.1016/j.jairtraman.2020.101818.

    Enoch MP, et al. Future local passenger transport system scenarios and implications for policy and practice. Transport P

Show more
How to Cite
Jiang, R. (et al.) 2022. Predicting Bus Travel Time with Hybrid Incomplete Data – A Deep Learning Approach . Traffic&Transportation Journal. 34, 5 (Sep. 2022), 673-685. DOI: https://doi.org/10.7307/ptt.v34i5.4052.

SPECIAL ISSUE IS OUT

Guest Editor: Eleonora Papadimitriou, PhD

Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal