Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

Promet - Traffic & Transportation Journal

Pioneering the future of mobility

Welcome to the world of Promet - Traffic&Transportation, where we delve into shaping the future of traffic and transportation through innovation and research. Our platform is dedicated to uncovering the latest insights, trends, and technological advancements impacting transportation systems worldwide.

Through an interdisciplinary approach, we explore how intelligent technologies, sustainable solutions, and transportation planning collectively shape the path towards safer, more efficient, and sustainable traffic and transportation systems.

Welcome to Promet - Traffic&Transportation, where we explore shaping the future of traffic and transportation through innovation and research. Discover the latest insights and technological advancements influencing transportation systems worldwide, aiming for safer, more efficient, and sustainable solutions.

Open Access

We truly believe in knowledge without boundaries!

The Journal is Indexed

Journal's metrics

WoS: IF 0.8
Scopus: Citescore 2023 1.9
SJR: Q3 (Engineering)

Latest Issue

Browse through the selection of our newest research

As a critical component of urban transportation, metro systems demand rigorous passenger flow safety management. This study proposes a comprehensive decision-making analysis method for metro station passenger flow safety management by integrating the entropy weight and TOPSIS methods. It aims to develop an evaluation model that accurately assesses and ranks the safety management practices of metro stations. To achieve this, 17 indicators related to station scale, safety management equipment, safety or security measures, investment in safety management and the effects of passenger flow management are selected to form an evaluation indicator system. The entropy weight method is employed to allocate weights to these indicators, reflecting their interrelatedness and importance. Subsequently, the TOPSIS method is used to establish a decision model that calculates the closeness of each station’s management practice to an optimal plan, allowing for the ranking of different stations’ safety management practices. The algorithms are developed and optimised using MATLAB, enabling efficient calculation and analysis. A case study involving real metro stations is conducted to validate the feasibility and effectiveness of the proposed evaluation method. The results demonstrate that this model provides an accurate assessment of metro station passenger safety management and offers decision-makers clear directions for improvement.

2024 (Vol 36), Issue 6

With the escalating global climate change, the cost of carbon emissions has become a crucial metric for evaluating the sustainability of logistics systems. This study addresses the optimisation of cold chain logistics routes in a time-varying network environment, considering the carbon emission cost factor, and proposes an enhanced particle swarm optimisation algorithm to solve this optimisation problem. Firstly, we establish a cold chain logistics optimisation model that incorporates the time-varying network, integrating logistics route planning with carbon emission costs. Subsequently, we design an improved particle swarm optimisation algorithm suitable for time-varying networks. This algorithm optimises vehicle routes and adjusts delivery times to minimise the total cost incurred during distribution. Finally, through simulation experiments, we analyse the impact of vehicle speeds and carbon trading mechanisms on optimisation outcomes. The results demonstrate that this method effectively optimises cold chain logistics routes, considering real network conditions and environmental factors, thereby reducing delivery costs and carbon emissions.

2024 (Vol 36), Issue 6

The study comprehensively evaluates the safety of contraflow left-turn lane intersection, characterised by unique traffic operational features distinct from conventional intersections. The evaluation specifically focuses on the process of left-turning vehicles entering the receiving lane within the intersection. The vehicle arrival rate of left-turning vehicles is analysed to identify vertical conflict features in contraflow left-turn lane design. By subdividing lanes within the intersection, the study delves into the lateral displacement of left-turning vehicles to establish lateral conflict features. To quantify the overall conflict potential, a multiple unit conflicts index is derived by integrating both vertical and lateral conflict features. Furthermore, the double index left-turn conflict model is constructed by introducing the potential collisions severity index during the conflict process. The results indicate that conflict hotspots along the vehicle travel path are primarily concentrated in two regions: (1) at pedestrian crosswalks and within a 2-meter extension; (2) within a range of 6 to 18 meters from the pedestrian crosswalk. The proposed model demonstrates good evaluation effectiveness, providing valuable insights into enhancing the safety of contraflow left-turn lane intersections.

2024 (Vol 36), Issue 6

To reveal the speed control behaviour and manoeuvring characteristics of direct vehicles that stop-go through signalised intersections, a large-scale field driving test was carried out in Chongqing to collect vehicle data under natural driving conditions. The characteristics of speed, longitudinal acceleration rate and their two-dimensional correlation were analysed for deceleration and acceleration behaviour at signalised intersections. Further, a sensitivity analysis of the simulation model on measured data was done with the micro-traffic simulation experiment of a signalised intersection. The following were observed: (1) Drivers’ speed-selection behaviours become more concentrated with closer distance from the stop point. The transects ±25 m from the stop point are abrupt change points in the discrete nature of driver speed-selective behaviours. (2) Drivers’ desire to decelerate during the stop-go through signalised intersections is more robust, with the magnitude of pedal manoeuvres for deceleration behaviours being more intense than that for acceleration behaviours. (3) There is a nonlinear correlation between longitudinal acceleration rate and speed. The longitudinal acceleration rate increased with increase in speed and then decreased with the inflection point at 15 km/h. (4) The micro-traffic simulation’s acceleration rate model is sensitive to measured acceleration rate parameters. This study guides the parameter setting of speed, deceleration rate and acceleration rate models for microscopic traffic simulation and for parameter calibration of the car-following model.

2024 (Vol 36), Issue 6

Unbalanced urban development causes complex and diverse urban traffic conditions, which complicates microcirculation traffic network planning. To address this, a method based on fast search random tree algorithm is proposed. An urban microcirculation traffic network is constructed using directed graphs, and road network interference intensity and capacity are calculated. The interpolation collision detection method is used to determine the shortest path while considering constraint conditions. By incorporating target gravity into the RRT algorithm, a growth guidance function is obtained, optimising the planned path and completing urban microcirculation traffic network planning. Experimental results demonstrate accurate shortest path calculation with up to 11% delay reduction compared to existing methods. Energy consumption during planning is lower than 10 kJ, ensuring fair resource distribution within the urban microcirculation transportation network. These advantages highlight the practicality and effectiveness of this research method.

2024 (Vol 36), Issue 6

2024 (Vol 36), Issue 6

See All Articles

Special Issue Is Out

We invite you to contribute to our special issue

Innovation and New Technologies in Transport and Logistics

Guest Editor: Eleonora Papadimitriou, PhD

Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD

Transport and logistics, essential components of today's interconnected and globalized world, serve as the backbone of economies worldwide. They facilitate the seamless movement of goods and people, driving trade, commerce, and societal development. However, amidst their significance, contemporary transport and logistics sectors face multifaceted challenges that demand innovative solutions.

Ensuring accessibility of transportation services in both urban and rural areas remains a pressing concern. Additionally, environmental sustainability and the imperative for eco-friendly transportation and logistics solutions are paramount. Crafting responsive transport services that adapt to evolving demands and integrating diverse transport modes within the same infrastructure poses significant challenges. The precision and reliability of transportation providers are also critical factors in meeting modern logistics demands.

Read more...

IThenticate logo
Clarivate logo
Turn it in logo
Creative Commons Attribution 4.0 logo

Stay Focused

Read about the latest news in the T&T landscape

Editor's Choice Papers

Explore the selection of scientific papers handpicked by the editor

Promet - Traffic&Transportation web page on a laptop.jpg

Junzhuo Li, Wenyong Li, Guan Lian

Data-driven forecasting methods have the problems of complex calculations, poor portability and need a large amount of training data, which limits the application of data-driven methods in small cities. This paper proposes a traffic flow forecasting method using a Nonlinear AutoRegressive model with eXogenous variables (NARX model), which uses a dynamic neural network Focused Time-Delay Neural Network (FTDNN) with a Tapped Delay Line (TDL) structure as a nonlinear function. The TDL structure enables the FTDNN to have short-term memory capabilities. At the same time, before the data is input into the FTDNN, the use of trend decomposition or differential calculation on the traffic data sequence can make the NARX model maintain long-term predictive capabilities. Compared with common nonlinear models, the FTDNN has structural advantages. It uses a simple TDL structure without the memory mechanism and the gated structure, which can reduce the parameters of the model and reduce the scale of data. Through the four-day data of Guilin City, the traffic volume forecast for five minutes is verified, and the performance of the NARX model is better than that of the SARIMA model and the Holt-Winters model.

2022 (Vol 34), Issue 6

Pavle Bugarčić, Nenad Jevtić, Marija Malnar

Vehicular and flying ad hoc networks (VANETs and FANETs) are becoming increasingly important with the development of smart cities and intelligent transportation systems (ITSs). The high mobility of nodes in these networks leads to frequent link breaks, which complicates the discovery of optimal route from source to destination and degrades network performance. One way to overcome this problem is to use machine learning (ML) in the routing process, and the most promising among different ML types is reinforcement learning (RL). Although there are several surveys on RL-based routing protocols for VANETs and FANETs, an important issue of integrating RL with well-established modern technologies, such as software-defined networking (SDN) or blockchain, has not been adequately addressed, especially when used in complex ITSs. In this paper, we focus on performing a comprehensive categorisation of RL-based routing protocols for both network types, having in mind their simultaneous use and the inclusion with other technologies. A detailed comparative analysis of protocols is carried out based on different factors that influence the reward function in RL and the consequences they have on network performance. Also, the key advantages and limitations of RL-based routing are discussed in detail.

2022 (Vol 34), Issue 6

For urban extra-long underwater tunnels, the obstacle space formed by the tunnel walls on both sides has an impact on the driver's driving. The aim of this study is to investigate the shy away characteristics of drivers in urban extra-long underwater tunnels. Using trajectory offset and speed data obtained from real vehicle tests, the driving behaviour at different lanes of an urban extra-long underwater tunnel was investigated, and a theory of shy away effects and indicators of sidewall shy away deviation for quantitative analysis were proposed. The results show that the left-hand lane has the largest offset and driving speed from the sidewall compared to the other two lanes. In the centre lane there is a large fluctuation in the amount of deflection per 50 seconds of driving, increasing the risk of two-lane collisions. When the lateral clearances are increased from 0.5 m to 2.19 m on the left and 1.29 m on the right, the safety needs of drivers can be better met. The results of this study have implications for improving traffic safety in urban extra-long underwater tunnels and for the improvement of tunnel traffic safety facilities.

2023 (Vol 35), Issue 4

Marko Orošnjak, Mitar Jocanović, Branka Gvozdenac-Urošević, Dragoljub Šević, Ljubica Duđak, Velibor Karanović

The research on Bus Fleet Management (BFM) has undergone significant changes. It is unclear whether these changes are accepted as technological change or as a paradigm shift. Perhaps unintentionally, BFM is still perceived as routing and scheduling by some, and by others as maintenance and replacement strategy. Therefore, the authors conducted a Systematic Literature Review (SLR) to overview the existing concepts and school of thoughts about how stakeholders perceive the BFM. The SLR post-study exposed that BFM should be acknowledged as a multi-realm system rather than a uniform dimension of fulfilling timely service. Nonetheless, the work encapsulates BFM evolution which shows the need for the multi-realm research abstracted as "Bus Fleet Mobility Management" and "Bus Fleet Asset Management". The difficulties of transport agencies and their ability to switch from conventional to Zero-Emission Buses (ZEBs) illustrates why we propose such an agenda, by which the research is validated through needs both in academia and in practice.

2020 (Vol 32), Issue 6

Emma Strömblad, Lena Winslott Hiselius, Lena Smidfelt Rosqvist, Helena Svensson

In search for measures to reduce greenhouse gas emissions from transport, insights into the characteristics of all sorts of trips and specifically trips by car are needed. This paper focuses on everyday leisure trips for social and recreational purposes. Travel behaviour for these purposes is analysed considering individual and household factors as well as properties of the trip, based on Swedish national travel survey data. The analysis reveals that everyday leisure trips are often of joint character and that the average distance travelled per person and day increases with, for example, income, cohabitation, children in the household and residence in rural areas. The result also shows that the studied characteristics vary between studied trip purposes, influencing the sustainability potential of a reduction in car use and suggested measures. For instance, the largest share of passenger mileage comes from social trips, whereas trips for exercise and outdoor life have the largest share of car trips below 5 km. Several characteristics indicate difficulties in transferring trips by car to, for example, bicycle or public transport due to convenience, economy, start times, company etc. The study indicates that there is a need to take a broader view of the effective potential.

2022 (Vol 34), Issue 4

The purpose of this research is to investigate the effect of land use, built environment and public transportation facilities’ locations on destinations of bike-sharing trips in an urban setting. Several methods have been applied to determine the relationship between predicting variables and trip destinations, such as ordinary least squares regression, spatial regression and geographically weighted regression. Additionally, a comparison between the proposed models, count models and random forest has been conducted. The data were collected in Budapest, Hungary. It has been found that touristic points of interest, and healthcare and educational points have a positive impact on bike-sharing destinations. Public transportation stops for buses, trains and trams attract bike-sharing users, which has a potential for the bike-and-ride system. Land use has different effects on bike-sharing trip destinations; mostly as a circular shape variation within the urban structure of the city, such as residential, industrial, commercial and educational zones. Other variables, such as road length and water areas, form as constraints to bike-sharing trip destinations. Geographically weighted and spatial regression performs better than count models and random forest. This study helps decision-makers in predicting the origin-destination matrix of bike-sharing trips based on the transportation network and land use.

2023 (Vol 35), Issue 1


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal