Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

Promet - Traffic & Transportation Journal

Pioneering the future of mobility

Welcome to the world of Promet - Traffic&Transportation, where we delve into shaping the future of traffic and transportation through innovation and research. Our platform is dedicated to uncovering the latest insights, trends, and technological advancements impacting transportation systems worldwide.

Through an interdisciplinary approach, we explore how intelligent technologies, sustainable solutions, and transportation planning collectively shape the path towards safer, more efficient, and sustainable traffic and transportation systems.

Welcome to Promet - Traffic&Transportation, where we explore shaping the future of traffic and transportation through innovation and research. Discover the latest insights and technological advancements influencing transportation systems worldwide, aiming for safer, more efficient, and sustainable solutions.

Open Access

We truly believe in knowledge without boundaries!

The Journal is Indexed

Journal's metrics

WoS: IF 0.8
Scopus: Citescore 2023 1.9
SJR: Q3 (Engineering)

Latest Issue

Browse through the selection of our newest research

2024 (Vol 36), Issue 6

The aim of this paper is to highlight the vulnerability of Maritime Autonomous Surface Ships (MASS) to cyber-attack and to illustrate, through a simulation experiment on a testbed, how to mitigate a cyber-attack on the MASS thruster controllers during low-speed motion. The first part of the paper is based on a scoping review of relevant articles in the field, including some MASS projects, related cyber threats and modelling techniques to improve cyber resilience. In the second part of the paper, a cyber-attack on the MASS thruster controllers at low speed motion is illustrated along with the impact of the attack on the trajectory motion. The Kalman filter, as an additional device to the thruster controllers, is used as a cyber-attack mitigation aid. Under the conditions of a simulated intrusion on the input and output signals of the thruster, the experiments conducted in the MATLAB Simulink environment provide an insight into the behaviour of the MASS propulsion subsystem from the perspective of the low-speed trajectory, with and without the Kalman filter.

2024 (Vol 36), Issue 6

Unbalanced urban development causes complex and diverse urban traffic conditions, which complicates microcirculation traffic network planning. To address this, a method based on fast search random tree algorithm is proposed. An urban microcirculation traffic network is constructed using directed graphs, and road network interference intensity and capacity are calculated. The interpolation collision detection method is used to determine the shortest path while considering constraint conditions. By incorporating target gravity into the RRT algorithm, a growth guidance function is obtained, optimising the planned path and completing urban microcirculation traffic network planning. Experimental results demonstrate accurate shortest path calculation with up to 11% delay reduction compared to existing methods. Energy consumption during planning is lower than 10 kJ, ensuring fair resource distribution within the urban microcirculation transportation network. These advantages highlight the practicality and effectiveness of this research method.

2024 (Vol 36), Issue 6

The study comprehensively evaluates the safety of contraflow left-turn lane intersection, characterised by unique traffic operational features distinct from conventional intersections. The evaluation specifically focuses on the process of left-turning vehicles entering the receiving lane within the intersection. The vehicle arrival rate of left-turning vehicles is analysed to identify vertical conflict features in contraflow left-turn lane design. By subdividing lanes within the intersection, the study delves into the lateral displacement of left-turning vehicles to establish lateral conflict features. To quantify the overall conflict potential, a multiple unit conflicts index is derived by integrating both vertical and lateral conflict features. Furthermore, the double index left-turn conflict model is constructed by introducing the potential collisions severity index during the conflict process. The results indicate that conflict hotspots along the vehicle travel path are primarily concentrated in two regions: (1) at pedestrian crosswalks and within a 2-meter extension; (2) within a range of 6 to 18 meters from the pedestrian crosswalk. The proposed model demonstrates good evaluation effectiveness, providing valuable insights into enhancing the safety of contraflow left-turn lane intersections.

2024 (Vol 36), Issue 6

The proposal to create front-loading warehouses has been suggested as a tactic to enhance the effectiveness and quality of distributing fresh agricultural products in the concluding stage of delivery. Nevertheless, there has been a noted escalation in the rate of loss of these products, which can be ascribed to multiple factors, including inaccuracies in demand forecasting. This incongruity arises from consumers’ inability to consume the initially forecasted quantities and unforeseen surges in demand from specific businesses. Consequently, surplus products are left unsold and eventually wasted. This study explores the viability of implementing a reverse logistics model for fresh agricultural products in tandem with the front-loading warehouse. The study presents both traditional and reverse dual models aimed at cost minimisation and introduces novel criteria for the selection of warehouse locations to enhance the efficiency of reverse logistics operations. An advanced hybrid heuristic optimisation algorithm is employed to identify optimal solutions, primarily focusing on minimising product loss rates, reducing logistics expenses and establishing a more equitable supply-demand equilibrium in the area. In the case of Nanjing, it is found that compared with the traditional model, because the network model assumes more functions, the front-loading warehouse in the reverse model has more site selection points in high-demand areas to meet the needs of consumers and is consistent with the distribution of population density and economic activities in Nanjing. At the same time, among the factors affecting the total cost, it is necessary to focus on transportation and fixed costs, while the impact of time and freight damage costs is less.

2024 (Vol 36), Issue 6

To reveal the speed control behaviour and manoeuvring characteristics of direct vehicles that stop-go through signalised intersections, a large-scale field driving test was carried out in Chongqing to collect vehicle data under natural driving conditions. The characteristics of speed, longitudinal acceleration rate and their two-dimensional correlation were analysed for deceleration and acceleration behaviour at signalised intersections. Further, a sensitivity analysis of the simulation model on measured data was done with the micro-traffic simulation experiment of a signalised intersection. The following were observed: (1) Drivers’ speed-selection behaviours become more concentrated with closer distance from the stop point. The transects ±25 m from the stop point are abrupt change points in the discrete nature of driver speed-selective behaviours. (2) Drivers’ desire to decelerate during the stop-go through signalised intersections is more robust, with the magnitude of pedal manoeuvres for deceleration behaviours being more intense than that for acceleration behaviours. (3) There is a nonlinear correlation between longitudinal acceleration rate and speed. The longitudinal acceleration rate increased with increase in speed and then decreased with the inflection point at 15 km/h. (4) The micro-traffic simulation’s acceleration rate model is sensitive to measured acceleration rate parameters. This study guides the parameter setting of speed, deceleration rate and acceleration rate models for microscopic traffic simulation and for parameter calibration of the car-following model.

2024 (Vol 36), Issue 6

See All Articles

Special Issue Is Out

We invite you to contribute to our special issue

Innovation and New Technologies in Transport and Logistics

Guest Editor: Eleonora Papadimitriou, PhD

Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD

Transport and logistics, essential components of today's interconnected and globalized world, serve as the backbone of economies worldwide. They facilitate the seamless movement of goods and people, driving trade, commerce, and societal development. However, amidst their significance, contemporary transport and logistics sectors face multifaceted challenges that demand innovative solutions.

Ensuring accessibility of transportation services in both urban and rural areas remains a pressing concern. Additionally, environmental sustainability and the imperative for eco-friendly transportation and logistics solutions are paramount. Crafting responsive transport services that adapt to evolving demands and integrating diverse transport modes within the same infrastructure poses significant challenges. The precision and reliability of transportation providers are also critical factors in meeting modern logistics demands.

Read more...

IThenticate logo
Clarivate logo
Turn it in logo
Creative Commons Attribution 4.0 logo

Stay Focused

Read about the latest news in the T&T landscape

Editor's Choice Papers

Explore the selection of scientific papers handpicked by the editor

Promet - Traffic&Transportation web page on a laptop.jpg

Emma Strömblad, Lena Winslott Hiselius, Lena Smidfelt Rosqvist, Helena Svensson

In search for measures to reduce greenhouse gas emissions from transport, insights into the characteristics of all sorts of trips and specifically trips by car are needed. This paper focuses on everyday leisure trips for social and recreational purposes. Travel behaviour for these purposes is analysed considering individual and household factors as well as properties of the trip, based on Swedish national travel survey data. The analysis reveals that everyday leisure trips are often of joint character and that the average distance travelled per person and day increases with, for example, income, cohabitation, children in the household and residence in rural areas. The result also shows that the studied characteristics vary between studied trip purposes, influencing the sustainability potential of a reduction in car use and suggested measures. For instance, the largest share of passenger mileage comes from social trips, whereas trips for exercise and outdoor life have the largest share of car trips below 5 km. Several characteristics indicate difficulties in transferring trips by car to, for example, bicycle or public transport due to convenience, economy, start times, company etc. The study indicates that there is a need to take a broader view of the effective potential.

2022 (Vol 34), Issue 4

Junzhuo Li, Wenyong Li, Guan Lian

Data-driven forecasting methods have the problems of complex calculations, poor portability and need a large amount of training data, which limits the application of data-driven methods in small cities. This paper proposes a traffic flow forecasting method using a Nonlinear AutoRegressive model with eXogenous variables (NARX model), which uses a dynamic neural network Focused Time-Delay Neural Network (FTDNN) with a Tapped Delay Line (TDL) structure as a nonlinear function. The TDL structure enables the FTDNN to have short-term memory capabilities. At the same time, before the data is input into the FTDNN, the use of trend decomposition or differential calculation on the traffic data sequence can make the NARX model maintain long-term predictive capabilities. Compared with common nonlinear models, the FTDNN has structural advantages. It uses a simple TDL structure without the memory mechanism and the gated structure, which can reduce the parameters of the model and reduce the scale of data. Through the four-day data of Guilin City, the traffic volume forecast for five minutes is verified, and the performance of the NARX model is better than that of the SARIMA model and the Holt-Winters model.

2022 (Vol 34), Issue 6

Pavle Bugarčić, Nenad Jevtić, Marija Malnar

Vehicular and flying ad hoc networks (VANETs and FANETs) are becoming increasingly important with the development of smart cities and intelligent transportation systems (ITSs). The high mobility of nodes in these networks leads to frequent link breaks, which complicates the discovery of optimal route from source to destination and degrades network performance. One way to overcome this problem is to use machine learning (ML) in the routing process, and the most promising among different ML types is reinforcement learning (RL). Although there are several surveys on RL-based routing protocols for VANETs and FANETs, an important issue of integrating RL with well-established modern technologies, such as software-defined networking (SDN) or blockchain, has not been adequately addressed, especially when used in complex ITSs. In this paper, we focus on performing a comprehensive categorisation of RL-based routing protocols for both network types, having in mind their simultaneous use and the inclusion with other technologies. A detailed comparative analysis of protocols is carried out based on different factors that influence the reward function in RL and the consequences they have on network performance. Also, the key advantages and limitations of RL-based routing are discussed in detail.

2022 (Vol 34), Issue 6

Laura Eboli, Maria Grazia Bellizzi, Gabriella Mazzulla

Evaluating air transport service quality is fundamen-tal to ensure acceptable quality standards for users and improve the services offered to passengers and tourists. In the transportation literature there is a wide range of studies about the evaluation of public transport service quality based on passengers’ perceptions; however, more recently, the evaluation of air transport service quality is becoming a relevant issue. Evaluating service quality in air transport sector represents a more stimulating chal-lenge, given the complexity of air transport system in re-gards to the other systems; in fact, air transport service is characterised by a great variety of service aspects relat-ing to services offered by the airlines and provided by the companies managing airports. The complexity of such a service requires a deep investigation on the methods adopted for collecting and analysing the data regarding passengers’ perceptions. We propose this paper just for treating these interesting aspects and to provide an ex-haustive literature review of the studies analysing ser-vice quality from the passengers’ point of view, where the opinions of the passengers are collected by the Customer Satisfaction Surveys (CSS). We decided to select papers published within the last decade (2010–2020) in journals indexed in important databases such as Scopus and WoS.

2022 (Vol 34), Issue 2

Snežana Tadić, Mladen Krstić, Milovan Kovač, Nikolina Brnjac

The negative effects of goods flows realisation are most visible in urban areas as the places of the greatest concentration of economic and social activities. The main goals of this article were to identify the applicable Industry 4.0 technologies for performing various city logistics (CL) operations, establish smart sustainable CL solutions (SSCL) and rank them in order to identify those which will serve as the base points for future plans and strategies for the development of smart cities. This kind of problem requires involvement of multiple stakeholders with their opposing goals and interests, and thus multiple criteria. For solving it, this article proposed a novel hybrid multi-criteria decision-making (MCDM) model, based on BWM (Best-Worst Method) and CODAS (COmbinative Distance-based ASsessment) methods in grey environment. The results of the model application imply that the potentially best SSCL solution is based on the combination of the concepts of micro-consolidation centres and autonomous vehicles with the support of artificial intelligence and Internet of Things technologies. The main contributions of the article are the definition of original SSCLs, the creation of a framework and definition of criteria for their evaluation and the development of a novel hybrid MCDM model.

2022 (Vol 34), Issue 5

Meixian Jiang, Guoxing Wu, Jianpeng Zheng, Guanghua Wu

This paper constructs a berth-quay crane capacity planning model with the lowest average daily cost in the container terminal, and analyzes the influence of the number of berths and quay cranes on the terminal operation. The object of berth-quay crane capacity planning is to optimize the number of berths and quay cranes to maximize the benefits of the container terminal. A steady state probability transfer model based on Markov chain for container terminal is constructed by the historical time series of the queuing process. The current minimum time operation principle (MTOP) strategy is proposed to correct the state transition probability of the Markov chain due to the characteristics of the quay crane movement to change the service capacity of a single berth. The solution error is reduced from 7.03% to 0.65% compared to the queuing theory without considering the quay crane movement, which provides a basis for the accurate solution of the berth-quay crane capacity planning model. The proposed berth-quay crane capacity planning model is validated by two container terminal examples, and the results show that the model can greatly guide the container terminal berth-quay crane planning.

2021 (Vol 33), Issue 2


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal