Promet - Traffic & Transportation Journal
Pioneering the future of mobility
Welcome to the world of Promet - Traffic&Transportation, where we delve into shaping the future of traffic and transportation through innovation and research. Our platform is dedicated to uncovering the latest insights, trends, and technological advancements impacting transportation systems worldwide.
Through an interdisciplinary approach, we explore how intelligent technologies, sustainable solutions, and transportation planning collectively shape the path towards safer, more efficient, and sustainable traffic and transportation systems.
Welcome to Promet - Traffic&Transportation, where we explore shaping the future of traffic and transportation through innovation and research. Discover the latest insights and technological advancements influencing transportation systems worldwide, aiming for safer, more efficient, and sustainable solutions.
Open Access
We truly believe in knowledge without boundaries!
Journal's metrics
WoS: IF 0.8
Scopus: Citescore 2023 1.9
SJR: Q3 (Engineering)
Latest Issue
Browse through the selection of our newest research
The aim of this paper is to highlight the vulnerability of Maritime Autonomous Surface Ships (MASS) to cyber-attack and to illustrate, through a simulation experiment on a testbed, how to mitigate a cyber-attack on the MASS thruster controllers during low-speed motion. The first part of the paper is based on a scoping review of relevant articles in the field, including some MASS projects, related cyber threats and modelling techniques to improve cyber resilience. In the second part of the paper, a cyber-attack on the MASS thruster controllers at low speed motion is illustrated along with the impact of the attack on the trajectory motion. The Kalman filter, as an additional device to the thruster controllers, is used as a cyber-attack mitigation aid. Under the conditions of a simulated intrusion on the input and output signals of the thruster, the experiments conducted in the MATLAB Simulink environment provide an insight into the behaviour of the MASS propulsion subsystem from the perspective of the low-speed trajectory, with and without the Kalman filter.
2024 (Vol 36), Issue 6
2024 (Vol 36), Issue 6
This paper focuses on the online energy-saving operation control problem for passenger and freight trains running in a single-track railway line. Firstly, we design a centralised optimisation method to generate energy-saving reference profiles for both passenger and freight trains, in order to improve the punctuality of passenger trains and to reduce the total running time of freight trains in a central way. Secondly, we propose the distributed model predictive control (DMPC) based online trajectory optimisation problems for both types of trains, subject to their respective operational constraints including safety, punctuality, static speed limits and temporary speed restrictions. Then we formulate an online train operation control algorithm based on the centralised optimisation method for the initialisation of train trajectories and the DMPC method for the online trajectory planning. Finally, the proposed algorithm is applied to case studies of passenger and freight trains in a single track railway, and the numerical simulation results show that the proposed algorithm can realise online control for energy-saving train operation in the presence of input disturbances and temporary speed restrictions.
2024 (Vol 36), Issue 6
With the escalating global climate change, the cost of carbon emissions has become a crucial metric for evaluating the sustainability of logistics systems. This study addresses the optimisation of cold chain logistics routes in a time-varying network environment, considering the carbon emission cost factor, and proposes an enhanced particle swarm optimisation algorithm to solve this optimisation problem. Firstly, we establish a cold chain logistics optimisation model that incorporates the time-varying network, integrating logistics route planning with carbon emission costs. Subsequently, we design an improved particle swarm optimisation algorithm suitable for time-varying networks. This algorithm optimises vehicle routes and adjusts delivery times to minimise the total cost incurred during distribution. Finally, through simulation experiments, we analyse the impact of vehicle speeds and carbon trading mechanisms on optimisation outcomes. The results demonstrate that this method effectively optimises cold chain logistics routes, considering real network conditions and environmental factors, thereby reducing delivery costs and carbon emissions.
2024 (Vol 36), Issue 6
The proposal to create front-loading warehouses has been suggested as a tactic to enhance the effectiveness and quality of distributing fresh agricultural products in the concluding stage of delivery. Nevertheless, there has been a noted escalation in the rate of loss of these products, which can be ascribed to multiple factors, including inaccuracies in demand forecasting. This incongruity arises from consumers’ inability to consume the initially forecasted quantities and unforeseen surges in demand from specific businesses. Consequently, surplus products are left unsold and eventually wasted. This study explores the viability of implementing a reverse logistics model for fresh agricultural products in tandem with the front-loading warehouse. The study presents both traditional and reverse dual models aimed at cost minimisation and introduces novel criteria for the selection of warehouse locations to enhance the efficiency of reverse logistics operations. An advanced hybrid heuristic optimisation algorithm is employed to identify optimal solutions, primarily focusing on minimising product loss rates, reducing logistics expenses and establishing a more equitable supply-demand equilibrium in the area. In the case of Nanjing, it is found that compared with the traditional model, because the network model assumes more functions, the front-loading warehouse in the reverse model has more site selection points in high-demand areas to meet the needs of consumers and is consistent with the distribution of population density and economic activities in Nanjing. At the same time, among the factors affecting the total cost, it is necessary to focus on transportation and fixed costs, while the impact of time and freight damage costs is less.
2024 (Vol 36), Issue 6
This paper presents a novel traffic flow prediction method emphasising heterogeneous vehicle characteristics and visual density features. Traditional models often overlook the variety of vehicles, resulting in inaccuracies. The proposed method utilises visual techniques to quantify traffic features, such as mixed flow and vehicle accumulation, enhancing dynamic density estimation and flow fluidity. We introduce a spatio-temporal prediction model that integrates various data types, capturing complex dependencies and improving accuracy. This research advances traffic flow prediction by considering the diverse nature of vehicles and leveraging visual data, offering valuable insights for intelligent transportation systems. Experimental results demonstrate the superiority of this approach over conventional methods, especially in capturing traffic flow fluctuations.
2024 (Vol 36), Issue 6
Special Issue Is Out
We invite you to contribute to our special issue
Innovation and New Technologies in Transport and Logistics
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD
Transport and logistics, essential components of today's interconnected and globalized world, serve as the backbone of economies worldwide. They facilitate the seamless movement of goods and people, driving trade, commerce, and societal development. However, amidst their significance, contemporary transport and logistics sectors face multifaceted challenges that demand innovative solutions.
Ensuring accessibility of transportation services in both urban and rural areas remains a pressing concern. Additionally, environmental sustainability and the imperative for eco-friendly transportation and logistics solutions are paramount. Crafting responsive transport services that adapt to evolving demands and integrating diverse transport modes within the same infrastructure poses significant challenges. The precision and reliability of transportation providers are also critical factors in meeting modern logistics demands.
Stay Focused
Read about the latest news in the T&T landscape

10th International Ergonomics Conference - ERGONOMICS 2024
It is with great pleasure that we invite you to participate in the 10th International Ergonomics Conference - ERGONOMICS 2024, which will be held from December 5th to 6th, 2024 in Zagreb, Hotel International.
Read more
Workshop - improving the publication process and developing the support system for the journal
Editorial Board meeting of the Promet – Traffic&Transportation journal took place on May 16th, 2023 as a workshop aimed at improving the publication process and developing the support system for the journal under the leadership of the Editor-in-Chief, Assoc. Prof. Ivona Bajor, PhD.
Read more
Cooperation between Faculty of Transportation Engineering and Vehicle Engineering, Budapest and journal Promet – Traffic & Transportation
On March 9, 2023, Editor-in-Chief Ivona Bajor and Assistant Editor-in-Chief, Luka Novačko met with long-term partners of the scientific journal Promet – Traffic & Transportation, representatives of the Budapest University of Technology and Economics, Faculty of Transportation Engineering and Vehicle Engineering, Vice-Dean for science and international cooperation Dr. Adam Torok and Dr. Tibor Šipoš.
Read more
Faculty of Logistics signed a co-publishing agreement
On December 21, 2022, the Faculty of Transport and Traffic Sciences, as the publisher of the scientific journal Promet-Traffic&Transportation and the University of Maribor, Faculty of Logistics signed a co-publishing agreement
Read more
Suradnja vezana uz izdavanje međunarodnog časopisa Promet – Traffic&Transportation
Prošlog tjedna održao se sastanak u Celju kojem su prisustvovali glavna urednica časopisa Promet – Traffic and Transportation, doc. dr. sc. Ivona Bajor i zamjenik glavne urednice izv. prof. dr. sc. Luka Novačko sa predstavnicima Univerze v Mariboru, Fakulteta za logistiko, dekanicom Majom Fošner i prodekanom za financije Andrejem Lisecom.
Read moreEditor's Choice Papers
Explore the selection of scientific papers handpicked by the editor

Junzhuo Li, Wenyong Li, Guan Lian
Data-driven forecasting methods have the problems of complex calculations, poor portability and need a large amount of training data, which limits the application of data-driven methods in small cities. This paper proposes a traffic flow forecasting method using a Nonlinear AutoRegressive model with eXogenous variables (NARX model), which uses a dynamic neural network Focused Time-Delay Neural Network (FTDNN) with a Tapped Delay Line (TDL) structure as a nonlinear function. The TDL structure enables the FTDNN to have short-term memory capabilities. At the same time, before the data is input into the FTDNN, the use of trend decomposition or differential calculation on the traffic data sequence can make the NARX model maintain long-term predictive capabilities. Compared with common nonlinear models, the FTDNN has structural advantages. It uses a simple TDL structure without the memory mechanism and the gated structure, which can reduce the parameters of the model and reduce the scale of data. Through the four-day data of Guilin City, the traffic volume forecast for five minutes is verified, and the performance of the NARX model is better than that of the SARIMA model and the Holt-Winters model.
2022 (Vol 34), Issue 6
Marko Orošnjak, Mitar Jocanović, Branka Gvozdenac-Urošević, Dragoljub Šević, Ljubica Duđak, Velibor Karanović
The research on Bus Fleet Management (BFM) has undergone significant changes. It is unclear whether these changes are accepted as technological change or as a paradigm shift. Perhaps unintentionally, BFM is still perceived as routing and scheduling by some, and by others as maintenance and replacement strategy. Therefore, the authors conducted a Systematic Literature Review (SLR) to overview the existing concepts and school of thoughts about how stakeholders perceive the BFM. The SLR post-study exposed that BFM should be acknowledged as a multi-realm system rather than a uniform dimension of fulfilling timely service. Nonetheless, the work encapsulates BFM evolution which shows the need for the multi-realm research abstracted as "Bus Fleet Mobility Management" and "Bus Fleet Asset Management". The difficulties of transport agencies and their ability to switch from conventional to Zero-Emission Buses (ZEBs) illustrates why we propose such an agenda, by which the research is validated through needs both in academia and in practice.
2020 (Vol 32), Issue 6
Emma Strömblad, Lena Winslott Hiselius, Lena Smidfelt Rosqvist, Helena Svensson
In search for measures to reduce greenhouse gas emissions from transport, insights into the characteristics of all sorts of trips and specifically trips by car are needed. This paper focuses on everyday leisure trips for social and recreational purposes. Travel behaviour for these purposes is analysed considering individual and household factors as well as properties of the trip, based on Swedish national travel survey data. The analysis reveals that everyday leisure trips are often of joint character and that the average distance travelled per person and day increases with, for example, income, cohabitation, children in the household and residence in rural areas. The result also shows that the studied characteristics vary between studied trip purposes, influencing the sustainability potential of a reduction in car use and suggested measures. For instance, the largest share of passenger mileage comes from social trips, whereas trips for exercise and outdoor life have the largest share of car trips below 5 km. Several characteristics indicate difficulties in transferring trips by car to, for example, bicycle or public transport due to convenience, economy, start times, company etc. The study indicates that there is a need to take a broader view of the effective potential.
2022 (Vol 34), Issue 4
The purpose of this research is to investigate the effect of land use, built environment and public transportation facilities’ locations on destinations of bike-sharing trips in an urban setting. Several methods have been applied to determine the relationship between predicting variables and trip destinations, such as ordinary least squares regression, spatial regression and geographically weighted regression. Additionally, a comparison between the proposed models, count models and random forest has been conducted. The data were collected in Budapest, Hungary. It has been found that touristic points of interest, and healthcare and educational points have a positive impact on bike-sharing destinations. Public transportation stops for buses, trains and trams attract bike-sharing users, which has a potential for the bike-and-ride system. Land use has different effects on bike-sharing trip destinations; mostly as a circular shape variation within the urban structure of the city, such as residential, industrial, commercial and educational zones. Other variables, such as road length and water areas, form as constraints to bike-sharing trip destinations. Geographically weighted and spatial regression performs better than count models and random forest. This study helps decision-makers in predicting the origin-destination matrix of bike-sharing trips based on the transportation network and land use.
2023 (Vol 35), Issue 1
Meixian Jiang, Guoxing Wu, Jianpeng Zheng, Guanghua Wu
This paper constructs a berth-quay crane capacity planning model with the lowest average daily cost in the container terminal, and analyzes the influence of the number of berths and quay cranes on the terminal operation. The object of berth-quay crane capacity planning is to optimize the number of berths and quay cranes to maximize the benefits of the container terminal. A steady state probability transfer model based on Markov chain for container terminal is constructed by the historical time series of the queuing process. The current minimum time operation principle (MTOP) strategy is proposed to correct the state transition probability of the Markov chain due to the characteristics of the quay crane movement to change the service capacity of a single berth. The solution error is reduced from 7.03% to 0.65% compared to the queuing theory without considering the quay crane movement, which provides a basis for the accurate solution of the berth-quay crane capacity planning model. The proposed berth-quay crane capacity planning model is validated by two container terminal examples, and the results show that the model can greatly guide the container terminal berth-quay crane planning.
2021 (Vol 33), Issue 2
Snežana Tadić, Mladen Krstić, Milovan Kovač, Nikolina Brnjac
The negative effects of goods flows realisation are most visible in urban areas as the places of the greatest concentration of economic and social activities. The main goals of this article were to identify the applicable Industry 4.0 technologies for performing various city logistics (CL) operations, establish smart sustainable CL solutions (SSCL) and rank them in order to identify those which will serve as the base points for future plans and strategies for the development of smart cities. This kind of problem requires involvement of multiple stakeholders with their opposing goals and interests, and thus multiple criteria. For solving it, this article proposed a novel hybrid multi-criteria decision-making (MCDM) model, based on BWM (Best-Worst Method) and CODAS (COmbinative Distance-based ASsessment) methods in grey environment. The results of the model application imply that the potentially best SSCL solution is based on the combination of the concepts of micro-consolidation centres and autonomous vehicles with the support of artificial intelligence and Internet of Things technologies. The main contributions of the article are the definition of original SSCLs, the creation of a framework and definition of criteria for their evaluation and the development of a novel hybrid MCDM model.
2022 (Vol 34), Issue 5