Hyunho Chang
Research & Development Centre Nettrek Co., LTD
Seunghoon Cheon
Korea Transport Institute (KOTI)
Portions of dynamic traffic volumes consisting of multiple vehicle classes are accurately monitored with-out vehicle detectors using vehicle-to-infrastructure (V2I) communication systems. This offers the feasibility of online monitoring of the total traffic volumes with multi-vehicle classes without any advanced vehicle de-tectors. To evaluate this prospect, this article presents a method of monitoring dynamic multi-class vehicu-lar traffic volumes in a road location where road-side equipment (RSE) for V2I communication is in opera-tion. The proposed method aims to estimate dynamic total traffic volume data for multiple vehicle classes us-ing the V2I sensing probe volume (i.e. partial vehicular traffic volumes) collected through the RSE. An experi-mental study was conducted using real-world V2I sens-ing probe volume data. The results showed that traffic volumes for vehicle types I and II (i.e. cars and heavy vehicles, respectively) can be effectively monitored with average errors of 6.69% and 10.89%, respectively, when the penetration rates of the in-vehicle V2I device for the two vehicle types average 0.384 and 0.537, re-spectively. The performance of the method in terms of detection error is comparable to those of widely used vehicle detectors. Therefore, V2I sensing probe data for multi-vehicle classes can complement the functions of vehicle detectors because the penetration rate of in-ve-hicle V2I devices is currently high.
Caceres N, Romero LM, Benitez FG, del Castillo JM. Traffic flow estimation models using cellular phone data. IEEE Transactions on Intelligent Transportation Systems. 2012;13(3): 1430-1441. doi: 10.1109/TITS.2012.2189006.
Caceres N, Romero LM, Benitez FG. Inferring origin-destination trip matrices from aggregate volumes on groups of links: A case study using volumes inferred from mobile phone data. Journal of Advanced Transportation. 2013;47(7): 650-666. doi: 10.1002/atr.187.
Chang H, Yoon B. Potentialities of autonomous vehicles for online monitoring of motorway traffic volume. Journal of Advanced Transportation. 2018;2018(Sep): 1-12. doi: 10.1155/2018/4276593.
Vlahogianni EI, Karlaftis MG, Golias JC. Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume. Transportation Research Part C. 2006;14(5): 351-367. doi: 10.1016/j.trc.2006.09.002.
Yoon B, Chang H. Potentialities of data-driven nonparametric regression in ur
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal