Snežana Tadić
Faculty of Transport and Traffic Engineering, University of Belgrade
Mladen Krstić
Faculty of Transport and Traffic Engineering, University of Belgrade
Milovan Kovač
Faculty of Transport and Traffic Engineering, University of Belgrade
Nikolina Brnjac
Faculty of Transport and Traffic Sciences, University of Zagreb
The negative effects of goods flows realization are most visible in urban areas - the places of the greatest concentration of economic and social activities. The application of succeeded classical technologies in the realization of new demands causes significant negative effects on all city functions and the quality of life. Considering the ongoing trends and new demands, smart sustainable city logistics (CL) solutions are defined in this article to mitigate the unsustainable effects of logistics. The solutions represent combinations of different initiatives, technologies and concepts of CL from one side, and the technologies of industry 4.0 from the other. Such an approach in defining smart CL solutions represents the main contribution of this article. The defined solutions are evaluated according to different stakeholder groups through the application of a novel hybrid multi-criteria decision-making (MCDM) model, based on BWM (Best-Worst Method) and CODAS (COmbinative Distance-based ASsessment) methods in grey environment, which is another contribution of the article. The results of the model’ application imply that the potentially best sustainable smart CL solution is the one that is based on the combination of the concepts of micro-consolidation centers and autonomous vehicles with the support of artificial intelligence and internet of things technologies.
European Commission. The European Green Deal. Brussels, 2019.
Tadić S, Zečević S. Global trends and their impact on city logistics management. Tehnika. 2016;71: 459–464. doi: 10.5937/tehnikal603459T.
Macharis C, Kin B. The 4 A’s of sustainable city distribution: Innovative solutions and challenges ahead. International Journal of Sustainable Transportation. 2017;11: 59–71. doi: 10.1080/15568318.2016.1196404.
Tadić S, Krstić M, Kovač M. Assessment of city logistics initiative categories sustainability. Environment, Development and Sustainability. 2022: 1–37. doi: 10.1007/s10668-021-02099-0.
Rześny-Cieplińska J, Szmelter-Jarosz A. Environmental sustainability in city logistics measures. Energies. 2020;13: 1303. doi: 10.3390/en13061303.
Tadić S, Zečević S. Modelling city logistics concepts.[Modeliranje koncepcija city logistike]. Beograd, Serbia: Faculty of Transport and Traffic Engineering, University of Belgrade; 2016.
Tadić S, Zečević S. Integrated p
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal