Ride-hailing, in addition to a common mode of daily transportation, is an attractive option for evacuating stranded passengers and supplementing bus bridging in the early stages of an urban rail transit (URT) disruption. This paper proposes a service supply chain comprised of ride-hailing vehicles, ride-hailing platforms, and stranded passengers wherein the URT and ride-hailing chain together provide emergency evacuation services. The emergency evacuation service supply chain can be coordinated under an effort-based revenue sharing contract. A URT-dominated Stackelberg game model between the URT and ride-hailing platform is then formulated to optimize compensation decisions on the part of the URT; numerical analysis reveals critical factors affecting the said decisions. The main contributions of this paper are two-fold: first, it provides new information regarding collaboration between URT operators and ride-hailing platforms for stranded passenger evacuation, including a ride-hailing platform pricing strategy; and second, the URT compensation decision process is solved via Stackelberg game model while revealing an incentive coefficient parameter for the URT decision and solver.
Air traffic complexity is usually defined as difficulty of monitoring and managing a specific air traffic situation. Since it is a psychological construct, best measure of complexity is that given by air traffic controllers. However, there is a need to make a method for complexity estimation which can be used without constant controller input. So far, mostly linear models were used. Here, the possibility of using artificial neural networks for complexity estimation is explored. Genetic algorithm has been used to search for the best artificial neural network configuration. The conclusion is that the artificial neural networks perform as well as linear models and that the remaining error in complexity estimation can only be explained as inter-rater or intra-rater unreliability. One advantage of artificial neural networks in comparison to linear models is that the data do not have to be filtered based on the concept of operations (conventional vs. trajectory-based).
This paper analyses changes of berth infrastructure and suprastructure by global container terminals (CTs) and by four eastern Adriatic ports in the last decade. The emphasis is on understanding whether CTs at Koper, Trieste, Rijeka and Bar achieved higher berth utilisation and productivity per ship-to-shore (STS) crane and if so, how and whether their development is in line with the global trend in CT berth productivity. On this basis a comparison model of twenty selected global CTs is used for productivity comparison as a first step in the process of analysing subsystem productivity. The study shows that four eastern Adriatic ports made different decisions, but with the same goals in reaction to the increased flow of containers via the Adriatic Sea transport route. Their main goal was to increase berth productivity by controlling the eventual subsystem overcapacity. According to observations, the Port of Koper is running at the subsystem’s upper level, while CTs in Trieste, Rijeka and Bar operate with certain degree of berth infrastructural, and suprastructural overcapacity.
Fuel savings are a significant aspect for evaluating the current and future technologies of civil aviation. Continuous-Descent Approach (CDA), as a representative of new concepts, requires a method for evaluating its fuel benefits. However, because of unavailability of the practical operational data, it is difficult to validate whether the previous fuel consumption mechanisms are suitable. This paper presents a unique method for quantifying potential fuel benefits. This permits an easy evaluation for the new procedures without modelling before implementing field tests. The proposed method is detailed in this paper. It derives from the inherent mechanical characteristic of aircraft engine, and utilizes historical flight data, rather than modelling, to predict fuel flow rates by matching flight conditions from Quick Access Recorder (QAR) data. The result has been shown to predict fuel consumption for conventional descent with the deviation of ±0.73%. To validate such method, a case study for our designed CDA procedure is presented. Fuel consumptions in baseline scenarios are estimated to analyse the variable impacts on fuel consumption. The estimated fuel benefits are consistent with the results in the previous field tests. This analysis helps support Air Traffic Management decisions on eventual field test by reducing the validation time and cost.
The phenomenon of affordable housing emerges in Chinese cities to meet low-income residents’ living needs in the city. Because affordable housing projects tend to be located far away from the city centre, their residents tend to face long commuting times to go to work. Although several studies have analysed commuting travel times, none have considered the commuting pattern of residents living in these affordable housing projects. This study employs a decision tree classifier to examine the commuting time patterns of affordable housing residents, fusing the data from the 2010 Nanjing Household Travel Survey and supplementary data collected through Google maps. Results show that attributes of the built environment and distance to work are the factors mostly influencing commuting time patterns of affordable housing residents in Nanjing. The availability of a subway service, job type, household car ownership, job location, travel mode choice, and departure time have logical but varying effects on commuting trip duration. These results provide a better understanding of these residents’ commuting patterns and provide urban planners insights about the effects of their affordable housing policies on travel behaviour.
Driving speed remains within the most important factors in road safety, and speed not only affects the severity of a crash but is also related to the risk of being involved in a crash. Inappropriate speed is responsible for more than a third of all fatal accidents occurring on roads. In Poland the problem of speeding drivers is widely present. Hence, effective speed management and enforcement of speed limits on existing roads plays an important role. Possible solutions for rural roads are very limited and are focused mainly on administrative speed limitations and speed cameras enforcement. However, due to their limited effectiveness new solutions are still being sought. High expectations are associated with the automatic section speed control system that has recently been introduced in Poland. The aim of this paper is to examine the efficiency of the automatic section speed control system on the basis of speed surveys collected on chosen national roads where the system for sectional speed control was first implemented. Conducted comparisons and statistical analyses included driver’s average speed, speed percentiles, the number of speeding drivers as well as speed heterogeneity. To evaluate the efficacy of the sectional speed system, speed measurements were also conducted on fourteen, similar in geometry and functional characteristics, reference national roads located in Podlaskie voivodship in Poland without any specific speed enforcement.
Design of curves and their adjacent elements presents the greatest safety problem on rural two-lane roads. The use of the existing alignment consistency safety criteria (design, operating speed, and driving dynamic consistency) could have some shortcomings, especially in countries where the project or design speed is in use instead of (higher) operating speed. The consequence is that the designer should use smaller cross fall on curves than needed, while the calculated side friction is lower than in reality. Further, the existing graphs of adjacent curve radii do not take into account that there is a maximum operating speed achieved for a certain radius or long tangent above which it does not increase. This paper presents a methodology for determination of adjacent horizontal curve radii, with and without tangent between, based on the operating speed models which include dependence of operating speeds on tangents and curves on speed of adjacent alignment elements as well as maximum tangent and curve speed. The developed graphs of adjacent radii at the same time include the limiting values of driving dynamic consistency criteria, so the road designer does not need to calculate permissible and demand side friction for every combination of adjacent alignment elements.
The availability of information and communication (IC) resources is a growing problem caused by the increase in the number of users, IC services, and the capacity constraints. IC resources need to be available to legitimate users at the required time. The availability is of crucial importance in IC environments such as smart city, autonomous vehicle, or critical infrastructure management systems. In the mentioned and similar environments the unavailability of resources can also have negative consequences on people's safety. The distributed denial of service (DDoS) attacks and traffic that such attacks generate, represent a growing problem in the last decade. Their goal is to disable access to the resources for legitimate users. This paper analyses the trends of such traffic which indicates the importance of its detection methods research. The paper also provides an overview of the currently used approaches used in detection system and model development. Based on the analysis of the previous research, the disadvantages of the used approaches have been identified which opens the space and gives the direction for future research. Besides the mentioned this paper highlights a DDoS traffic generated through Internet of things (IoT) devices as an evolving threat that needs to be taken into consideration in the future studies.
In recent years, high-speed maglev systems have received renewed attention once again. However, a systematic and transparent approach to evaluate high-speed maglev projects does not currently exist, which could be an obstacle for their application, even with technical success. In Germany, the Standardised Evaluation is applied as a basis for decision making regarding the public funding of projects. It should be implemented for all investments of urban public transport projects with a value of more than € 25 million. In this paper, the economic evaluation for the Shanghai-Hangzhou maglev project is carried out with the Standardised Evaluation. One of the most important contributions of this work is to demonstrate the applicability of Standardised Evaluation for high-speed maglev projects. With the Standardised Evaluation, the evidence of macroand microeconomic benefit can be presented in a transparent and systematic way. The result can be used to prove the project’s profitability and to rank different projects or project alternatives.
This paper considers vehicle dispatching for a flexible transit system providing doorstep services from a terminal. The problem is tackled with an easy-to-implement threshold policy, where an available vehicle is dispatched when the number of boarded passengers reaches or exceeds a certain threshold. A simulation-based approach is applied to find the threshold that minimizes the expected system-wide cost. Results show that the optimal threshold is a function of demand, which is commonly stochastic and time-varying. Consequently, the dispatching threshold should be adjusted for different times of the day. In addition, the simulation-based approach is used to simultaneously adjust dispatching threshold and fleet size. The proposed approach is the first work to analyse threshold dispatching policy. It could be used to help improve efficiency of flexible transit systems, and thereby make this sustainable travel mode more economical and appealing to users.
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal