Ruiyong Tong
School of Traffic and Transportation, Beijing Jiaotong University
Qi Xu
School of Traffic and Transportation, Beijing Jiaotong University
Runbin Wei
School of Traffic and Transportation, Beijing Jiaotong University
Junsheng Huang
School of Traffic and Transportation, Beijing Jiaotong University
Zhongsheng Xiao
School of Traffic and Transportation, Beijing Jiaotong University
The centrality of stations is one of the most important issues in urban transit systems. The central stations of such networks have often been identified using network to-pological centrality measures. In real networks, passenger flows arise from an interplay between the dynamics of the individual person movements and the underlying physical structure. In this paper, we apply a two-layered model to identify the most central stations in the Beijing Subway System, in which the lower layer is the physical infrastruc-ture and the upper layer represents the passenger flows. We compare various centrality indicators such as degree, strength and betweenness centrality for the two-layered model. To represent the influence of exogenous factors of stations on the subway system, we reference the al-pha centrality. The results show that the central stations in the geographic system in terms of the betweenness are not consistent with the central stations in the network of the flows in terms of the alpha centrality. We clarify this difference by comparing the two centrality measures with the real load, indicating that the alpha centrality approx-imates the real load better than the betweenness, as it can capture the direction and volume of the flows along links and the flows into and out of the systems. The empirical findings can give us some useful insights into the node cen-trality of subway systems.
Newman MEJ. The structure and function of complex networks. SIAM Review. 2003;45(2): 167-256. doi: 10.1137/S003614450342480.
Boccaletti S, et al. Complex networks: Structure and dynamics. Physics Reports. 2006;424(4): 175-308. doi: 10.1016/j.physrep.2005.10.009.
Derrible S, Kennedy C. Applications of graph theory and network science to transit network design. Transport Reviews. 2011;31(4): 495-519. doi: 10.1080/01441647.2010.543709.
Lin J, Ban Y. Complex network topology of transportation systems. Transport Reviews. 2013;33(6): 658-685. doi: 10.1080/01441647.2013.848955.
Xu M, et al. Discovery of critical nodes in road networks through mining from vehicle trajectories. IEEE Transactions on Intelligent Transportation Systems. 2018;20(2): 583-593. doi: 10.1109/TITS.2018.2817282.
Kocur-Bera K. Scale-free network theory in studying the structure of the road network in poland. Promet – Traffic&Transportation. 2014;26(3): 235-242. doi: 10.7307/ptt.v26i3.1316.
Calzada-Infante
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal