Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
23.02.2018
LICENSE
Copyright (c) 2024 Jelena Kajalić, Nikola Čelar, Stamenka Stanković

Travel Time Estimation on Urban Street Segment

Authors:

Jelena Kajalić
Belgrade University, Faculty of Transport and Traffic Engineering

Nikola Čelar
The Faculty of Transport and Traffic Engineering, Belgrade University

Stamenka Stanković
The Faculty of Transport and Traffic Engineering, Belgrade University

Keywords:urban street, level of service, speed-flow curve, travel time survey,

Abstract

Level of service (LOS) is used as the main indicator of transport quality on urban roads and it is estimated based on the travel speed. The main objective of this study is to determine which of the existing models for travel speed calculation is most suitable for local conditions. The study uses actual data gathered in travel time survey on urban streets, recorded by applying second by second GPS data. The survey is limited to traffic flow in saturated conditions. The RMSE method (Root Mean Square Error) is used for research results comparison with relevant models: Akcelik, HCM (Highway Capacity Manual), Singapore model and modified BPR (the Bureau of Public Roads) function (Dowling - Skabardonis). The lowest deviation in local conditions for urban streets with standardized intersection distance (400-500 m) is demonstrated by Akcelik model. However, for streets with lower signal density (<1 signal/km) the correlation between speed and degree of saturation is best presented by HCM and Singapore model. According to test results, Akcelik model was adopted for travel speed estimation which can be the basis for determining the level of service in urban streets with standardized intersection distance and coordinated signal timing under local conditions.

References

  1. Mtoi ET, Moses R. Calibration and Evaluation of Link Congestion Functions: Applying Intrinsic Sensitivity of Link Speed as a Practical Consideration to Heterogeneous Facility Types within Urban Network. Journal of Transportation Technologies. 2014; 4(2): 141-149.

    Ali AT, Venigalla MM, Flannery A. Estimating Running Time on Urban Street Segments. Proceedings of the 3rd Urban Street Symposium, 24-27 June 2007, Seattle, Washington. Washington DC: Transportation Research Board of the National Academies of Science; 2007. p. 1-12. Available from: http://www.urbanstreet.

    info/3rd_symp_proceedings/Estimating Running

    Time.pdf [Accessed 18th January 2016]

    Xie C, Cheu RL, Lee D. Calibration-Free Arterial Link Speed Estimation Model Using Loop Data. Journal of Transportation Engineering. 2001; 127(6): 507-514.

    Dowling R, Skabardonis A. Urban Arterial Speed-Flow Equations for Travel Demand Models. Proceedings of the Innovations in Travel Demand Modeling, 21-23 May 2006, Austin, Texas. Tran

Show more
How to Cite
Kajalić, J. (et al.) 2018. Travel Time Estimation on Urban Street Segment. Traffic&Transportation Journal. 30, 1 (Feb. 2018), 115-120. DOI: https://doi.org/10.7307/ptt.v30i1.2473.

SPECIAL ISSUE IS OUT

Guest Editor: Eleonora Papadimitriou, PhD

Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal