Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
08.07.2022
LICENSE
Copyright (c) 2024 Qiushi Zhang, Jing Qi, Yongtian Ma, Jiaxiang Zhao, Jianjun Fang

Time Differential Pricing Model of Urban Rail Transit Considering Passenger Exchange Coefficient

Authors:

Qiushi Zhang
School of Urban Rail Transit and Logistics, Beijing Union University

Jing Qi
School of Tourism, Beijing Union University

Yongtian Ma
School of Urban Rail Transit and Logistics, Beijing Union University

Jiaxiang Zhao
School of Urban Rail Transit and Logistics, Beijing Union University

Jianjun Fang
School of Urban Rail Transit and Logistics, Beijing Union University

Keywords:urban rail transit, time differential pricing, bi-level programming model, passenger exchange coefficient

Abstract

Passenger exchange coefficient is a significant factor which has great impact on the pricing model of urban rail transit. This paper introduces passenger exchange coefficient into a bi-level programming model with time differential pricing for urban rail transit by analysing variation regularity of passenger flow characteristics. Meanwhile, exchange cost coefficient is also considered as a restrictive factor in the pricing model. The improved particle swarm optimisation algorithm (IPSO) was applied to solve the model, and simulation results show that the proposed improved pricing model can effectively realise stratification of fares for different time periods with different routes. Taking Line 2 and Line 8 of the Beijing rail transit network as an example, the simulation result shows that passenger flows of Line 2 and Line 8 in peak hours decreased by 9.94% and 19.48% and therefore increased by 32.23% and 44.96% in off-peak hours, respectively. The case study reveals that dispersing passenger flows by means of fare adjustment can effectively drop peak load and increase off-peak load. The time differential pricing model of urban rail transit proposed in this paper has great influences on dispersing passenger flow and ensures safety operation of urban rail transit. It is also a valuable reference for other metropolitan rail transit operating companies.

References

  1. Currie G. Quick and effective solution to rail overcrowding: Free early bird ticket experience in Melbourne. Transportation Research Record. 2010;2146(1): 35-42. doi: 10.3141/2146-05.

    Sharaby N, Shiftan Y. The impact of fare integration on travel behavior and transit ridership. Transport Policy. 2012;21: 63-70. doi: 10.1016/j.tranpol.2012.01.015.

    Kamel I, Shalaby A, Abdulhai B. A modelling platform for optimizing time-dependent transit fares in large-scale multimodal networks. Transport Policy. 2020;92: 38-54. doi: 10.1016/j.tranpol.2020.04.002.

    Yook D, Heaslip K. Determining appropriate fare levels for distance-based fare structure: Considering users’ behaviors in a time-expanded network. Transportation Research Record. 2014;2415(1): 127-135. doi: 10.3141/2415-14.

    Borndörfer R, Hoang ND. Fair ticket pricing in public transport as a constrained cost allocation game. Annals of Operations Research. 2015;226(1): 51-68. doi: 10.1007/s10479-014-1698-z.

    Zhang XQ, Liu D, Wang B. P

Show more
How to Cite
Zhang, Q. (et al.) 2022. Time Differential Pricing Model of Urban Rail Transit Considering Passenger Exchange Coefficient. Traffic&Transportation Journal. 34, 4 (Jul. 2022), 609-618. DOI: https://doi.org/10.7307/ptt.v34i4.4017.

SPECIAL ISSUE IS OUT

Guest Editor: Eleonora Papadimitriou, PhD

Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal