Carlos A Silva
Centre for Marine Engineering and Technology (CENTEC), Instituto Superior Técnico, Universidade de Lisboa,
Carlos Guedes Soares
Centre for Marine Technology and Engineering (CENTEC)
Instituto Superior Técnico, Universidade de Lisboa
Avenida Rovisco Pais
1049-001 Lisboa
The potential growth found inthe short sea shipping sector motivated the development of a methodology usedas a decision support tool in which both the parameters regarding the demand ofmarkets and the characteristics of the fleet may be tested for its evaluation.It is also possible to determine the fleet deployment, establishing its routesand scales in the ports for a particular scenario. The considered methodologymay be divided in two parts, being the first one related with the generation ofall feasible routes, alongside all the parameters specific to each route foreach vessel class. The second part is the introduction of a linear programmingmodel that maximizes the shipping operation’s total profit, according a givenset of restrictions. The models were structured according to three main criteria:the evaluation of the fleet for each vessel’s class; the optimal route for eachvessel and the frequency in each port. To provide the methodology’s validation,the developed models shall be submitted to a fictitious operational scenario,considering three different situations: the fleet’s normal operation; aparametric variation of required demand for the same fleet composition; anevaluation of several fleet compositions for the same demand level.
. List, G.F., Wood, B., Nozick, L.K., Turnquist, M.A., Jones, D.A., Kjeldgaard, E.A. and Lawton, C.R., 2002, Robust optimization for fleet planning under uncertainty. Transportation Research Part E: Logistics and Transportation Review, 39 (3), 209-227.
. Ronen, D., 1993, Vessel scheduling: The last decade. European Journal of Operational Research, 71, 325-333.
. Silva, C. A. and Guedes Soares, C., 2011, Planning a fleet of containerships for a given set of ports. C. Guedes Soares, Y. Garbatov S. Sutulo T. A. Santos, (Eds.). Maritime Engineering and Technology. London, UK: Taylor & Francis Group; 2012; pp. 87-96.
. Cullinane, K. and Khanna, M., 2000, Economies of scale in large containerships: optimal size and geographical implications. Journal of Transport Geography, 8 (3), 181-195.
. Wong, P.T.H., Singh, V.K. and Mcgeer, E.G., 1984, Vehicle routing using fixed delivery areas. Omega, 12 (6), 591-600.
. Shapiro, J. and Goldberg, R.R., 2001, Extending Graham’s result on schedu
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal