Qichen OU
Department of Transportation and Logistics, Southwest Jiaotong University
Mi GAN
Department of Transportation and Logistics, Southwest Jiaotong University
Meitong AN
Department of Transportation and Logistics, Southwest Jiaotong University
Yichen WANG
Department of Transportation and Logistics, Southwest Jiaotong University
This study introduces a holistic framework for optimising road-rail intermodal hub locations based on real regional freight data and railway station information. The primary objective is to enhance railway transportation capacity, thereby facilitating the development of a low-carbon transport system. Research begins by scrutinising the freight landscape in the region, focusing on transport volume, freight intensity, goods types and average delivery distances. Subsequently, data mining techniques, including DBSCAN clustering and frequent itemset mining, are employed to uncover freight demand hotspots across both spatial and temporal dimensions. Based on these findings, a mathematical model for hub location selection is constructed, along with criteria for goods categories suitable for rail transportation. Ultimately, using the Beijing-Tianjin-Hebei region as a case study, 12 road-rail intermodal hubs are identified, along with the main cargo types best suited for rail transport within their respective service areas. This transition is expected to result in an annual reduction of 470,000 tons of regional carbon emissions. The proposed method framework provides valuable guidance and practical insights for the optimisation of freight structures in various regions. Furthermore, it aligns with contemporary environmental and sustainability objectives, contributing to the broader goal of establishing low-carbon transport systems.
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal