Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
31.08.2016
LICENSE
Copyright (c) 2024 Chao Lu, Jie Huang, Jianwei Gong

Reinforcement Learning for Ramp Control: An Analysis of Learning Parameters

Authors:

Chao Lu
Beijing Institute of Technology

Jie Huang
University of Leeds

Jianwei Gong
Beijing Institute of Technology

Keywords:reinforcement learning, Q-learning, ramp control, agent, macroscopic traffic flow model, ent learning

Abstract

Reinforcement Learning (RL) has been proposed to deal with ramp control problems under dynamic traffic conditions; however, there is a lack of sufficient research on the behaviour and impacts of different learning parameters. This paper describes a ramp control agent based on the RL mechanism and thoroughly analyzed the influence of three learning parameters; namely, learning rate, discount rate and action selection parameter on the algorithm performance. Two indices for the learning speed and convergence stability were used to measure the algorithm performance, based on which a series of simulation-based experiments were designed and conducted by using a macroscopic traffic flow model. Simulation results showed that, compared with the discount rate, the learning rate and action selection parameter made more remarkable impacts on the algorithm performance. Based on the analysis, some suggestions
about how to select suitable parameter values that can achieve a superior performance were provided.

References

  1. Zhang G, Wang Y. Optimizing coordinated ramp metering: a preemptive hierarchical control approach. Comput-Aided Civ Inf. 2013;28(1):22-37. doi: 10.1111/j.1467-8667.2012.00764.x

    Papageorgiou M, Kotsialos A. Freeway ramp metering: an overview. IEEE Trans Intell Transport Syst. 2002;3(4):271-281. doi: 10.1109/TITS.2002.806803

    Masher DP, Ross DW, Wong PJ, Tuan PL, Zeidler HM, Petracek S. Guidelines for design and operation of ramp control systems. Stanford: Stanford Research Institute; 1975.

    Papageorgiou M, Hadj-Salem H, Blosseville JM. ALINEA: A local feedback control law for on-ramp metering. Transport Res Rec, 1991;1320:58-64.

    Hegyi A, De Schutter B, Hellendoorn H. Model predictive control for optimal coordination of ramp metering and variable speed limits. Transport Res C-Emer. 2005;13(3):185-209. doi: 10.1016/j.trc.2004.08.001

    Papamichail I, Kotsialos A, Margonis I, Papageorgiou M. Coordinated ramp metering for freeway networks – a model-predictive hierarchical control appr

Show more
How to Cite
Lu, C. (et al.) 2016. Reinforcement Learning for Ramp Control: An Analysis of Learning Parameters. Traffic&Transportation Journal. 28, 4 (Aug. 2016), 371-381. DOI: https://doi.org/10.7307/ptt.v28i4.1830.

SPECIAL ISSUE IS OUT

Guest Editor: Eleonora Papadimitriou, PhD

Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal