Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
30.08.2016
LICENSE
Copyright (c) 2024 Oscar A. Rosas-Jaimes, Luis Alberto Quezada Téllez, Guillermo Fernández Anaya

Polynomial Approach and Non-linear Analysis for a Traffic Fundamental Diagram

Authors:Oscar A. Rosas-Jaimes, Luis Alberto Quezada Téllez, Guillermo Fernández Anaya

Abstract

Vehicular traffic can be modelled as a dynamic discrete form. As in many dynamic systems, the parameters modelling traffic can produce a number of different trajectories or orbits, and it is possible to depict different flow situations, including chaotic ones. In this paper, an approach to the wellknown density-flow fundamental diagram is suggested, using an analytical polynomial technique, in which coefficients are taken from significant values acting as the parameters of the traffic model. Depending on the values of these parameters, it can be seen how the traffic flow changes from stable endpoints to chaotic trajectories, with proper analysis in their stability features.

Keywords:traffic fundamental diagram, nonlinear behaviour, polynomial approximation,

References

  1. Institute of Transportation Engineers (ITE) Traffic Engineering Handbook 6th ed. Washington DC, 2009.

    Payne H., Models of freeway traffic and control, in Mathematic Models of Public Systems. Smulation Council, 1971;28(1):51–61.

    Daganzo C. F., Fundamentals of Transportation and Traffic Operations, Pergamon, Elsevier.

    Marušić S., Fluid Models in the Traffic Flow Theory, Promet - Traffic & Transportation, 2000;12(1):7-14.

    Chapra S. and Canale R., Numerical Methods for Engineers, 6th Ed. McGraw-Hill, 2009.

    Lo S.-C. and Cho H.-J., Chaos and control of discrete dynamic model, Journal of the Franklin Institute, 2005;342:839–851.

    Devaney R. L., An introduction to chaotic dynamical systems, 1987.

    Thamizh V. A. and Dhivya G., Measuring heterogeneous traffic density, International Journal of Engineering and Applied Sciences, 2010; 6(3): 144–148.

    Kim T. and Zhang H. M., An empirical study on gap time and its relation to the fundamental diagram of traffic flow, in 7th International IEEE Conference on Intelligent Transportation Systems, Washington, D.C., 2004:94–99.

    Lighthill M. J. and Whitham G. B., On kinematic waves. I. Flood movement in long rivers, Proc. Royal Soc. A., 1955;229:281–316.

    Richards P. I., Shock waves on the highway, Operation research, 1956;4:42–51.

    Holmgren, R. A., A first Course in Discrete Dynamical Systems, Springer, N. Y., 1994.

    Greenberg, H., An analysis of traffic flow. Operations Research 1959;7:79-85.

    Greenshields, B.D. “A study of traffic capacity”. Highway Research Board, 1935;14:448-477.

    Ngoc P.H.A., Hieu L.T., On stability of discrete-time systems under nonlinear time-varying perturbations, Advance in Difference Equations 2012;2012:120.

Show more


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal