Jedna od glavnih točaka koje treba razmotriti pri analizi sudara vozila-pješaka je brzina udara vozila. Ako se prometna nesreća ne zabilježi na kameri, a nema tragova klizanja ili tahografa u vozilu, parametar se određuje na temelju empirijskih modela. Svi empirijski modeli za utvrđivanje brzine vozila temelje se na udaljenosti odbačaja pješaka, što nije uvijek poznato zbog neidentificirane točke sudara vozila-pješaka ili konačnog položaja mirovanja pješaka nakon sudara. U ovom radu je deskpriptivni opis oštećenja vozila pretočen u ordinalnu skalu i određen je model predviđanja udaljenosti pješaka na osnovu ovako definiranih oštećenja na vozilu. Ako je mjesto nesreće dokumentirano fotografijama, šteta se može klasificirati, a primjenom validiranog modela predviđena je i udaljenost odbačaja pješaka. Zatim, primjenom empirijskog modela, može se odrediti brzina vozila u trenutku sudara s pješacima. Tijekom istraživanja formirane su dvije baze podataka. Prvi se temelji na stvarnim prometnim nesrećama (stručno veštačenje profesora s Fakulteta tehničkih nauka). Drugi se temelji na simulacijama prometnih nezgoda u sklopu programskog paketa PC Crash.
Gábor M. Gépjárműszakértés. Budapest: Maróti Könyvkereskedés és Könyvkiadó Kft.; 2004.
Limpert R. Brake Design and Safety. United States of America: Society 01’ Autonlohve Engineers; 1999.
Searle JA, Searle A. The Trajectories of Pedestrians, Motorcycles, Motorcyclists, etc. Following a Road Accident. SAE Technical Paper 831622; 1983; p. 277–80. Available from: doi:10.4271/831622
Stcherbatcheff G, Tarriere C, Duclos P, Fayon A. Simulation of Collisions Between Pedestrians and Vehicles Using Adult and Child Dummies. SAE Technical Paper 751167; 1975. p. 33. Available from: doi:10.4271/751167
Simms CK, Wood DP. Confidence limits for impact speed estimation from pedestrian projection distance. International Journal of Crashworthiness. 2004;9(2): 219-28.
Wood DP, Simms CK, Walsh DG. Vehicle – pedestrian collisions : validated models for pedestrian impact and projection. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering. 2005;219(2): 183-195.
Fugger TF, Randles BC, Wobrock JL, Eubanks JJ. Pedestrian Throw Kinematics in Forward Projection Collisions. SAE 2002 World Congress & Exhibition. Available from: doi:10.4271/2002-01-0019
Han I, Brach RM. Throw Model for Frontal Pedestrian Collisions. SAE Technical Paper 2001-01-0898; 2001; p. 16.
Batista M. A simple throw model for frontal vehicle-pedestrian collisions. Promet – Traffic&Transportation. 2008;20(6): 357-68.
Eubanks JJ, Haight WR. Pedestrian involved traffic collision reconstruction methodology. SAE Technical Paper 921591; 1992; p. 37-49.
Cheng Y, Wong K, Tam C, Tam Y, Wong T, Tao C. Validation of pedestrian throw equations by video footage of real life pedestrian/vehicle collisions. Forensic Science International. 2015;257: 409-12.
Wood DP. Application of a pedestrian impact model to the determination of impact speed. SAE Technical Paper 910814; 1991.
Kostić S. Tehnike bezbednosti i kontrole saobraćaja. Faculty of Technical Sciences, University of Novi Sad; 2009. Serbian.
Burg H, Moser A. Handbuch Verkehrsunfall-rekonstruktion. Wiesbaden, Springer Science+Business Media; 2007.
Soica A, Tarelescu S. Impact phase in frontal vehicle-pedestrian collisions. International Journal of Automotive Technology. 2016;17(3): 387-97. Available from: doi:10.1007/s12239-016-0040-y
Zou T, Yu Z, Cai M, Liu J. Analysis and application of relationship between post-braking-distance and throw distance in vehicle-pedestrian accident reconstruction. Forensic Science International. 2011;207(1–3): 135-44.
Lesko MM, Woodford M, White L, O'Brien SJ, Childs C, Lecky FE. Using Abbreviated Injury Scale (AIS) codes to classify Computed Tomography (CT) features in the Marshall System. Medical Research Methodology. 2010;10: 72. Available from: doi:10.1186/1471-2288-10-72.
Glynn C, Wood DP. Pedestrian Speed from Vehicle Damage. 24 EVU Conference, Edinburgh; 2015.
PC-Crash – A Simulation program for Vehicle Accidents, Operating Manual. Version 12.0. Linz, Austria; 2019.
Ratner B. Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data. Chapman & Hall/CRC; 2003.
Kutner MH, Nachtsheim CJ, Neter J, Li W. Applied Linear Statistical Models. McGraw-Hill/Irwin; 2005. 1415 p.
Barzeley M, Lacy GW. Scientific Automobile Accident Reconstruction. New York, USA: Matthew Bender & Company Incorporated; 1978.
Bhalla K, Montazemi P, Crandall J, Yang J, Liu X, Dokko Y, et al. Vehicle impact velocity prediction from pedestrian throw distance: Trade-offs between throw formulae, crash simulators, and detailed multi-body modeling. Proceedings of the International IRCOBI Conference on the Biomechanics of Impacts, Munich, Germany; 2002.
Portal RJ, Dias JM. Pedestrian Reconstruction Tools Applied to Pedestrian Accidents in Portugal. Proceedings of the 3rd International Symposium on ESAR "Expert Symposium on Accident Research", Hannover, Germany; 2009; p. 304-14.
Hoxha G, Shala A, Likaj R. Pedestrian crash model for vehicle. International Journal of Civil Engineering and Technology. 2017;8(9): 1093-9.
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Dario Babić, PhD; Marko Matulin, PhD; Marko Ševrović, PhD.
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal