The proper functioning of warehouse processes is fundamental for operational improvement and overall logistic supply chain improvement. Order picking is considered one of the most important from the group. Throughout picking orders in warehouses, the presence of human work is highly reflected, with the main goal to reduce the process time as much as possible, that is, to the very minimum. There are several different order picking methods, and nowadays, the most common ones are being developed and are significantly dependent on the type of goods, the warehouse equipment, etc., and those that stand out are scanning and picking by voice. This paper will provide information regarding the dairy industry in the Republic of Croatia with the analysis of order picking process in the observed company. Overall research highlighted the problem and resulted in proposals of solutions.
Bartholdi JJ, Hackman ST. Warehouse and distribution science, the supply chain and logistics institute. Atlanta: School of Industrial and Systems Engineering; 2011.
Richards G. Warehouse management: a complete guide to improving efficiency and minimizing costs in the modern warehouse. London: Kogan Page; 2014.
Croatia. [Basic Structural Business Indicators of Enterprises]. Zagreb: Croatian Bureau of Statistics; 2014. Croatian
Mendes P. Demand driven supply chain: a structured and practical roadmap to increase profitability. Berlin: Springer Berlin Heidelberg; 2011.
Lee JA, Chang YS, Shim H, Cho S. A study on the picking process time. Procedia Manufacturing. 2015;3:731-738.
Saif A, Elhedhli S. Cold supply chain design with environmental considerations: a simulation-optimization approach. European Journal of Operational Research. 2015;251(1):274-287. doi: http://dx.doi.org/10.1016/j.ejor.2015.10.056
Lu W, McFarlane D, Giannikas V, Zhang Q. An algorithm for dynamic order-picking in warehouse operations. European Journal of Operational Research. 2016;248(1):107-122. doi: http://dx.doi.org/10.1016/j.ejor.2015.06.074
Thomas LM, Meller RD. Developing design guidelines for a case-picking warehouse. International Journal of Production Economics. 2015;170(Part C):741-762. doi: http://dx.doi.org/10.1016/j.ijpe.2015.02.011
Pazour JA, Carlo HJ. Warehouse reshuffling: insights and optimization. Transportation Research Part E: Logistics and Transportation Review. 2015;73:207-226. doi: http://dx.doi.org/10.1016/j.tre.2014.11.002
Rakesh V, Adil GK. Layout optimization of a three dimensional order picking warehouse. IFAC-PapersOnLine. 2015;48(3):1155-1160. doi: 10.1016/j.ifacol.2015.06.240
Kang JH, Kim YD. Inventory control in a two-level supply chain with risk pooling effect. International Journal of Production Economics. 2012;135(1):116-124. doi: http://dx.doi.org/10.1016/j.ijpe.2010.11.014
Zhang Y. Correlated storage assignment strategy to reduce travel distance in order picking. IFAC-PapersOnLine. 2016;49(2)30-35. doi:10.1016/j.ifacol.2016.03.006
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Dario Babić, PhD; Marko Matulin, PhD; Marko Ševrović, PhD.
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal