Delia Schösser
Technical University Dresden "Friedrich List", Faculty of Transport and Traffic Sciences, Institute of Transport and Economics
Jörn Schönberger
Technical University Dresden "Friedrich List", Faculty of Transport and Traffic Sciences, Institute of Transport and Economics
People and companies today are connected around the world, which has led to a growing importance of the aviation industry. As flight delays are a big challenge in aviation, machine learning algorithms can be used to forecast those. This paper investigates the prediction of the occurrence of flight arrival delays with three promi-nent machine learning algorithms for a data set of do-mestic flights in the USA. The task is regarded as a clas-sification problem. The focus lies on the investigation of the influence of short-term features on the quality of the results. Therefore, three scenarios are created that are characterised by different input feature sets. When for-going the inclusion of short-term information in order to shift the prediction timing to an early point in time, an accuracy of 69.5% with a recall of 68.2% is achieved. By including information on the delay that the aircraft had on its previous flight, the prediction quality increases slightly. Hence, this is a compromise between the early prediction timing of the first model and the good predic-tion quality of the third model, where the departure delay of the aircraft is added as an input feature. In this case, an accuracy of 89.9% with a recall of 83.4% is obtained. The desired timing of prediction therefore determines which features to use as inputs since short-term features significantly improve the prediction quality.
Awad M, Khanna R. Efficient learning machines theories, concepts, and applications for engineers and system designers. Berkeley, CA: Apress; 2015.
Bureau of Transportation Statistics (BTS). 2019 traffic data for U.S. airlines and foreign airlines U.S. flights. 2020. https://www.bts.dot.gov/newsroom/final-full-year-2019-traffic-data-us-airlines-and-foreign-airlines-us-flights [Accessed 21st Mar. 2022].
Bureau of Transportation Statistics (BTS). Airline on-time performance and causes of flight delays. 2021. https://www.bts.gov/topics/airlines-and-airports/airline-time-performance-and-causes-flight-delays [Accessed 21st Mar. 2022].
Federal Aviation Administration (FAA). Air traffic by the numbers. 2020. https://www.faa.gov/air_traffic/by_the_numbers/media/Air_Traffic_by_the_Numbers_2020.pdf [Accessed 21st Mar. 2022].
Jacquillat A, Odoni AR. A roadmap toward airport demand and capacity management. Transportation Research Part A: Policy and Practice. 2018;114: 168-185. doi: 10.1016/j.tra
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal