Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
18.02.2022
LICENSE
Copyright (c) 2024 Ivan Ivanović, Nikola Čelar, Vladimir Đorić, Dragana Petrović

Modelling the Impact of Rain in Traffic Assignment Procedures

Authors:

Ivan Ivanović
Faculty of Transport and Traffic Engineering, University of Belgrade

Nikola Čelar
Faculty of Transport and Traffic Engineering, University of Belgrade

Vladimir Đorić
Faculty of Transport and Traffic Engineering, University of Belgrade

Dragana Petrović
Faculty of Transport and Traffic Engineering, University of Belgrade

Keywords:rain impact, volume-delay function, transport model, traffic assignment

Abstract

The efficiency of urban transportation system is un-der the influence of weather conditions. It is necessary to incorporate these impacts into transport system analysis, in order to prepare adequate mitigation measures. Trans-port models are often used in different types of transport system analysis and forecasting of its future characteris-tics. This paper focuses on implementation of the impact of rain in transport modelling, particularly into a traffic assignment process as a part of a macroscopic transport model. This aspect of modelling is important because it can indicate parts of the network where this impact leads to a high volume/capacity ratio, which is a good input for defining mitigation measures. Commonly, transport models do not consider weather impacts in its standard procedures. The paper presents a methodology for cali-brating volume-delay function in order to improve traf-fic assignment modelling in case of rain. The impact of different rain categories on capacity and free-flow speed was quantified and implemented in the volume-delay function. Special attention is given to the calibration of the part of volume-delay function for over-saturated traf-fic conditions. Calibration methodology is applicable for different types of volume-delay functions and presents a solid approach to incorporate weather conditions into common engineering practice.

References

  1. Pregnolato M, et al. Assessing urban strategies for re-ducing the impacts of extreme weather on infrastructure networks. Royal Society Open Science. 2007;3(5). doi: 10.1098/rsos.160023.

    Ogryzek M, Adamska-Kmieć D, Klimach A. Sustain-able transport: An efficient transportation network-case study. Sustainability. 2020;12(19): 1–14. doi: 10.3390/su12198274.

    Saneinejad S, Roorda MJ, Kennedy C. Modelling the im-pact of weather conditions on active transportation travel behaviour. Transportation Research Part D: Transport and Environment. 2012;17(2): 129–137. doi: 10.1016/j.trd.2011.09.005.

    Schwanen T. Transport geography, climate change and space: opportunity for new thinking. Journal of Trans-port Geography. 2019;81(April): 102530. doi: 10.1016/j.jtrangeo.2019.102530.

    Ivanović I, Jović J. Sensitivity of street network ca-pacity under the rain impact: Case study of Bel-grade. Transport. 2018;33(2): 470–477. doi: 10.3846/16484142.2017.1283532.

    Kyte M, Khatib Z, Shannon P, K

Show more
How to Cite
Ivanović, I. (et al.) 2022. Modelling the Impact of Rain in Traffic Assignment Procedures. Traffic&Transportation Journal. 34, 1 (Feb. 2022), 69-78. DOI: https://doi.org/10.7307/ptt.v34i1.3936.

SPECIAL ISSUE IS OUT

Guest Editor: Eleonora Papadimitriou, PhD

Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal