Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
27.10.2013
LICENSE
Copyright (c) 2024 Luoyi HUANG, Jiao YAO, Wei WU, Xiaoguang YANG

Feasibility Analysis of Vehicle-to-vehicle Communication on Suburban Road

Authors:

Luoyi HUANG
Tongji University DENSO (China) Investment Co., Ltd

Jiao YAO
Business School, University of Shanghai for Science and Technology

Wei WU
Tongji University Business School, University of Shanghai for Science and Technology

Xiaoguang YANG
Tongji University

Keywords:vehicle-to-vehicle communication, dedicated short range communications, field test, suburban road,

Abstract

With the evolution of advanced wireless communication technologies, tremendous efforts have been invested in vehicular networking, particularly the construction of a vehicle-to-vehicle communication system that supports high speed and mobility. In vehicle-to-vehicle communication environment, vehicles constantly exchange information using wireless technology.

This paper aims to propose a vehicle-to-vehicle communication system and validate the feasibility of the system on a suburban road in China. Two vehicles were used equipped with IEEE 802.11p based DSRC (Dedicated Short Range Communications) device to construct a vehicle-to-vehicle communication platform. The system architecture consisting of hardware and software was described in details. Then, communication characteristics such as RSSI (Received Signal Strength Indicator), latency and PLR (packet loss rate) were analyzed. Additionally, GPS-related information (such as ground speed and location) was obtained through field test on a suburban road in Shanghai and Taicang City. The test results demonstrate satisfactory performance of the proposed system.

References

  1. Vales-Alonso, J., F. Vicente-Carrasco, and J.J. Alcaraz: Optimal Configuration of Roadside Beacons in V2I Communications. Computer Networks, Vol. 55, No. 14, 2011, pp. 3142-3153

    Calafate, C.T., G. Fortino, S. Fritsch, et al.: An Efficient and Robust Content Delivery Solution for IEEE 802.11p Vehicular Environments. Journal of Network and Computer Applications, Vol. 35, No. 2, 2012, pp. 753-762

    Rajamani, R. and S.E. Shladover: An Experimental Comparative Study of Autonomous and Cooperative Vehicle-Follower Control Systems. Transportation Research Part C: Emerging Technologies, Vol. 9, No. 1, 2001, pp. 15-31

    Fujii, H., O. Hayashi, and N. Nakagata: Experimental Research on Inter-Vehicle Communication Using Infrared Rays, IEEE Intelligent Vehicles Symposium, Tokyo, Japan, 1996

    Ozguner, U., F. Ozguner, M. Fitz, et al.: Inter-Vehicle Communication: Recent Developments at Ohio State University, IEEE Intelligent Vehicle Symposium, Versailles, France, 2002

    Tae Min, K. and C. Jae Weon:

Show more
How to Cite
HUANG, L. (et al.) 2013. Feasibility Analysis of Vehicle-to-vehicle Communication on Suburban Road. Traffic&Transportation Journal. 25, 5 (Oct. 2013), 483-493. DOI: https://doi.org/10.7307/ptt.v25i5.446.

SPECIAL ISSUE IS OUT

Guest Editor: Eleonora Papadimitriou, PhD

Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal