Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
28.06.2023
LICENSE
Copyright (c) 2024 Mateusz Zajac, Tomislav Rožić, Dora Naletina

Determining the Probability of Unproductive Manipulations in Inland Intermodal Terminal Operations

Authors:Mateusz Zajac, Tomislav Rožić, Dora Naletina

Abstract

The paper concerns the method of determining the probability of unproductive manipulations during operations, maintenance or repairs on an inland intermodal terminal. The method is mathematically based on the semi-Markov process. The developed method enables revision of unproductive manipulation frequency and duration. It provides an opportunity to analyse and change inland terminal operations so as to increase productivity.

Keywords:container storage optimization, inland intermodal terminal, container storage, heuristic procedure, semi-Markov model

References

  1. [1] Rožić T, Ivanković B, Bajor I, Starčević M. A network-based model for optimization of container location assignment at inland terminals. Applied Sciences. 2022;12(12):5833. DOI: 10.3390/app12125833.
  2. [2] Dowd TJ, Leschine TM. Container terminal productivity: A perspective. Maritime Policy & Management. 1990;17(2):107-112. DOI: 10.1080/03088839000000060.
  3. [3] Yun WY, Choi YS. A simulation model for container-terminal operation analysis using an object-oriented approach. International Journal of Production Economics. 1999;59(1-3):221-230. DOI: 10.1016/S0925-5273(98)00213-8.
  4. [4] Elnaggar M. Application of queuing theory to the container terminal at Alexandria seaport. Journal of Soil Science and Environmental Management. 2010;1(4):77-85.
  5. [5] Mazouz AK, Alnaji L, Lyu Y. Container – Terminal – Gate system optimization. Journal of Applied Business Research. 2017;33(3):615. DOI: 10.19030/jabr.v33i3.9949.
  6. [6] Guan C, Liu RR. Container terminal gate appointment system optimization. Maritime Economics & Logistics. 2009;11(4):378-398. DOI: 10.1057/mel.2009.13.
  7. [7] Zhen L, Jiang X, Lee LH, Chew EP. A review on yard management in container terminals. Industrial Engineering and Management Systems. 2013;12(4):289-304. DOI: 10.7232/iems.2013.12.4.289.
  8. [8] Kuo S-Y, Lin P-C. Determinants of green performance in container terminal operations: A lean management. Journal of Cleaner Production. 2020;275:123105. DOI: 10.1016/j.jclepro.2020.123105.
  9. [9] Lirn TC, Wu YCJ, Chen YJ. Green performance criteria for sustainable ports in Asia. International Journal of Physical Distribution & Logistics Management. 2013;43(5-6):427-451. DOI: 10.1108/IJPDLM-04-2012-0134.
  10. [10] Pipatprapa A, Huang HH, Huang C-HF. The role of quality management & innovativeness on green performance. Corporate Social Responsibility and Environmental Management. 2017;24(3):249-260. DOI: 10.1002/csr.1416.
  11. [11] El Yaagoubi A, et al. A logistic model for a French intermodal rail/road freight transportation system. Transportation Research Part E: Logistics and Transportation Review. 2020;164:102819. DOI: 10.1016/j.tre.2022.102819.
  12. [12] Zając M. The model of reducing operations time at a container terminal by assigning places and sequence of operations. Applied Sciences. 2021;11(24):12012. DOI: 10.3390/app112412012.
  13. [13] Malyshev NV, Koroviakovskii E, Rostovceva SA. Robotic automation of inland container terminals. Zeszyty Naukowe Akademii Morskiej w Szczecinie. 2020;63:69-76. DOI: 10.17402/441.
  14. [14] Kwasniowski S, et al. Telematic problems of unmanned vehicles positioning at container terminals and warehouses. International Conference on Transport Systems Telematics, 10th Conference, TST 2010, 20-23 Oct. 2010, Katowice - Ustron, Poland. 2010; p. 391-399. DOI: 10.1007/978-3-642-16472-9_43.
  15. [15] Wadhwa SS, Farahmand K, Vachal K. A deterministic mathematical model to support future investment decisions for developing inland container terminals. Research in Transportation Economics. 2019;77:100764. DOI: 10.1016/j.retrec.2019.100764.
  16. [16] Rožić T, Rogić K, Ivanković B. Modelling inland terminal locations based on transport cost optimisation. International Journal of Shipping and Transport Logistics. 2020;12(5):487-503. DOI: 10.1504/IJSTL.2020.109889.
  17. [17] Chang Y-M, Zhu X-N. Slot allocation of railway container terminal considering stowage plan. Journal of Transportation Engineering. 2020;20(4):205-216. DOI: 10.19818/j.cnki.1671-1637.2020.04.017.
  18. [18] Kastner M, Peters M, Jahn C. Assessing performance of container slot allocation heuristics. Proceedings of the Hamburg International Conference of Logistics (HICL). 2021;32:427-454. DOI: 10.15480/882.4003.
  19. [19] Chang Y, Zhu X. A novel two-stage heuristic for solving storage space allocation problems in rail–water intermodal container terminals. Symmetry. 2019;11(10):1229. DOI: 10.3390/sym11101229.
  20. [20] Wiese J, Suhl L, Kliewer N. Planning container terminal layouts considering equipment types and storage block design. In: Böse J. (eds) Handbook of Terminal Planning. Operations Research/Computer Science Interfaces Series, vol 49. New York, NY: Springer; 2011. p. 219-245. DOI: 10.1007/978-1-4419-8408-1_12.
  21. [21] Lin DY, Chiang CW. The storage space allocation problem at a container terminal. Maritime Policy & Management. 2017;44(6):685-704. DOI: 10.1080/03088839.2017.1335897.
  22. [22] De A, Pratap S, Kumar A, Tiwari MK. A hybrid dynamic berth allocation planning problem with fuel costs considerations for container terminal port using chemical reaction optimization approach. Annals of Operations Research. 2020;290(1):783-811. DOI: 10.1007/s10479-018-3070-1.
  23. [23] Yang X, Hu H, Jin J, Luo N. Joint optimization of space allocation and yard crane deployment in container terminal under uncertain demand. Computers & Industrial Engineering. 2022;108425. DOI: 10.1016/j.cie.2022.108425.
  24. [24] He J, Xiao X, Yu H, Zhang Z. Dynamic yard allocation for automated container terminal. Annals of Operations Research. 2022;1-22. DOI: 10.1007/s10479-021-04458-6.
  25. [25] Ben-Daya M, Duffuaa SO, Raouf A. Maintenance, modeling and optimization. 2000. DOI: 10.1007/978-1-4615-4329-9.
  26. [26] Woźniak W, et al. An algorithmic concept for optimising the number of handling operations in an intermodal terminal node. Proceedings of the 28th International Business-Information-Management-Association (IBIMA), 9-10 Nov. 2016, Seville, Spain. 2016.
  27. [27] Hagenloch T. Die Seminar-und Bachelorarbeit im Studium der Wirtschaftswissenschaften: Ein kompakter Ratgeber. BoD–Books on Demand; 2010.
  28. [28] Kaoud E, El-Sharief MA, El-Sebaie MG. Scheduling problems of automated guided vehicles in job shop, flow shop, and container terminals. 2017 4th International Conference on Industrial Engineering and Applications (ICIEA). IEEE; 2017. p. 60-65. DOI: 10.1109/IEA.2017.7939179.
  29. [29] Mohan J, Lanka K, Rao AN. A review of dynamic job shop scheduling techniques. Procedia Manufacturing. 2019;30:34-39. DOI: 10.1016/j.promfg.2019.02.006.
  30. [30] Zheng F, et al. Integrated berth allocation and quay crane assignment with maintenance activities. International Journal of Production Research. 2019;57(11):3478-3503. DOI: 10.1080/00207543.2018.1539265.
  31. [31] Szpytko J, Duarte YS. Integrated maintenance decision making platform for gantry cranes in container terminal. 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR). IEEE; 2019. p. 507-512. DOI: 10.1109/MMAR.2019.8864636.
  32. [32] Gao Y, Chang D, Chen CH, Xu Z. Design of digital twin applications in automated storage yard scheduling. Advanced Engineering Informatics. 2022;51:101477. DOI: 10.1016/j.aei.2021.101477.
  33. [33] Zajac M, Swieboda J. An unloading work model at an intermodal terminal. International Conference on Dependability and Complex Systems. Springer, Cham; 2015. p. 573-582. DOI: 10.1007/978-3-319-19216-1_55.
  34. [34] Restel FJ, et al. The Markov reliability and safety model of the railway transportation system. Safety and Reliability: Methodology and Applications - Proceedings of the European Safety and Reliability Conference. 2014. p. 303-311.
  35. [35] Restel FJ, Zajac M. Reliability model of the railway transportation system with respect to hazard states. 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE; 2015. p. 1031-1036. DOI: 10.1109/IEEM.2015.7385805.
  36. [36] Zajac M, Budny T. On determination of some characteristics of semi-Markov process for different distributions of transient probabilities. Reliability: Theory & Applications. 2009;4:74-84.
  37. [37] Jo JH, Kim S. Key performance indicator development for ship-to-shore crane performance assessment in container terminal operations. Journal of Marine Science and Engineering. 2019;8(1):6. DOI: 10.3390/jmse8010006.
  38. [38] Korolyuk VS, Brodi SM, Turbin AF. Semi-Markov processes and their applications. Journal of Soviet Mathematics. 1975;4(3):244-280.
  39. [39] Feller W. On semi-Markov processes. Proceedings of the National Academy of Sciences. 1964;51(4):653-659. DOI: 10.1073/pnas.51.4.653.
  40. [40] Grabski F. Concept of semi-Markov process. Scientific Journal of Polish Naval Academy. 2016;57. DOI: 10.5604/0860889x.1224743.
  41. [41] Werbińska-Wojciechowska S, Zając P. Use of delay-time concept in modelling process of technical and logistics systems maintenance performance. Case study. Journal of Maintenance and Reliability. 2015;17(2):174-185. DOI: 10.17531/ein.2015.2.2.
  42. [42] Kierzkowski A, Zajac M. Analysis of the reliability discrepancy in container transshipment. 11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability Conference. 2012. p. 826-831.
Show more


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal