Efendi Nasibov
Uğur Eliiyi
Mefharet Özkilçik Ertaç
Ümit Kuvvetli
The quality of public transportation services is one of the most important performance indicators of modern urban policies for both planning and implementation aspects. Therefore, along with the size of the city, the significance of appropriate cost evaluation and optimization of all related transportation activities increases as well. One of the most important cost factors for the public transport agencies is naturally the fuel consumption of the vehicles. In this study, the attention is focused on the metropolitan bus transport service. The specific aim is to minimize a significant portion of total fuel utilization that occurs due to the so called deadhead trip or dead mileage, which is defined as the idle distance covered by the vehicle between the garage and the route terminal stops without carrying any passengers. In this study, the results of four mathematical models for minimizing the total deadhead trip distance covered in city bus services of Izmir are presented. The models vary due to the inclusion of garage capacity restrictions or operator distinction for supporting both operational and strategical decisions. All models are applied to the recent bus schedule data, which consist of 293 routes, 1,424 buses and 10 garages, for obtaining the optimal route bus-garage allocations and garage capacities. The results of the Decentralized-Capacitated model, which is appropriate for quick implementation, promise a 7.8% reduction in total dead mileage. While on the other hand, if all garage capacities can be expanded and the bus service is maintained only by one operator as modelled in the Centralized-Uncapacitated case, even a 31.4% improvement is possible in the long term. The environmental gains as well as the financial benefits to be achieved when the solutions are actually implemented, justify the practical contribution of the study.
Izmir City Booklet: http://www.izmir.bel.tr/booklet/online_brosur_ingilizce/Default.html [22 May 2012]
Sharma, V., Prakash, S.: Optimizing dead mileage in urban bus routes, Journal of Transportation Engineering, Vol. 112, No. 1, 1986, pp. 121-129
Agrawal, A.K., Dhingra, S.L.: An optimal programme for augmentation of capacities of depots and shipment of buses from depots to starting points of routes, Indian Journal of Pure and Applied Mathematics, Vol. 20, No. 2, 1989, pp. 111-120
Waters, N.M., Wirasinghe, S.C., Babalola, A., Marion, K.E.D.: Location of bus garages, Journal of Advanced Transportation, Vol. 20, No. 2, 1986, pp. 133-150
Uyeno, D.H., Willoughby, K.A.: Transit center location-allocation decisions, Transportation Research Part A: Policy and Practice, Vol. 29, No. 4, 1995, pp. 263-272
Van der Perre, P.P.G., Van Oudheusden, D.D.L.: Reducing depot-related costs of large bus operators a case study in Bangkok, European Journal of Operational Research, Vol. 96, No. 1, 199
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal