Svetla Dimitrova Stoilova
Technical University of Sofia, Faculty of Transport, Bulgaria
A major problem connected with planning the organization of trains on a railway network is the optimization of the scheme of movement, which determines the routing and the number of trains. In this paper, an integrated approach of fuzzy linear programming method and multi-criteria analysis including three steps is proposed. In the first step, we defined the schemes of transportation of intercity trains and optimized each scheme in terms of direct operating costs by taking into account the uncertainty of passenger flows and utilization of train capacity using the fuzzy linear programming method. In the second step we determined the additional technological criteria to assess the variant schemes. The Fuzzy AHP method was applied to determine the weights of criteria. Using the results obtained from Fuzzy AHP, we prioritized the variant schemes of transportation by applying the PROMETHEE method. The third step presents the optimal choice of transportation of trains on a railway network based on minimum ratio of normalized costs and normalized PROMETHEE net outranking flow. In this step, the model uses the results obtained in the first and second steps. The practicability of the integrated approach is demonstrated
through the case study of Bulgaria’s railway network, and nine schemes were investigated. The model results and the real situation were compared. It was found out that the optimal scheme of intercity train transportation improves the service and reduces direct operating costs.
REFERENCES
Guzman V, Masegosa A, Pelta D, Verdegay J. Fuzzy Models and Resolution Methods for Covering Location Problems: an Annotated Bibliography. Int. J. Unc. Fuzz. Knowl. Based Syst.2016; 24(4):561-591. doi.org/10.1142/S0218488516500276
Verdegay J. Progress on Fuzzy Mathematical Programming: A personal perspective. Fuzzy Sets and Systems. 2015; 281:219-226. doi.org /10.1016/j.fss.2015.08.023.
Li W, Qin Y, Xu J, Jia L. A Fuzzy Optimization Model for High-Speed Railway Timetable Rescheduling. Discrete Dynamics in Nature and Society. 2012; Article ID 827073:1-22.doi.org/10.1155/2012/827073
Meng X, Jia L, Xiang W, Xu J. Train re-scheduling based on an improved fuzzy linear programming model.2015; Kybernetes 44(10):1472-1503. doi: 10.1108/K-10-2014-0226
Chang Yeong-Hwa, Yeh C-H, Shen C-C. A multiobjective model for passenger train services planning: application to Taiwan's high-speed rail line. Transportation Research Part B: Methodological. 2000; 34(2): 91-106. doi.org/10.1016
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal