Weimin Ma
Tongji University
Nannan Lin
Tongji University
Xiaoxuan Chen
University of Wisconsin-Madison
Wenfen Zhang
Wuhan University of Technology
In the past few years, numerous mobile applications have made it possible for public transit passengers to find routes and learn about the expected arrival times of their transit vehicles. Previous studies show that provision of accurate real-time bus information is vital to passengers for reducing their anxieties and wait times at bus stops. Inadequate and/or inaccurate real-time information not only confuses passengers but also reinforces the bad image of public transit. However, almost all methods of real-time information optimization are aimed at predicting bus arrival or travel times. In order to make up for the lack of information accuracy, this paper proposes a new approach to optimize mobile real-time information for each transit route based on robust linear optimization. An error estimation is added to current bus arrival time information as a new element of mobile bus applications. The proof process of the robust optimization model is also presented in this paper. In the end, the model is tested on two comparable bus routes in Shanghai. The real-time information for these two routes was obtained from Shanghai Bus, a mobile application used in Shanghai City. The test results reflect the validity, disadvantages, and risk costs of the model.
. Dziekan K, Kottenhoff K.(2007). Dynamic at-stop real-time information displays for public transport: effects on customers[J]. Transportation Research Part A: Policy and Practice 41(6): 489-501.
. Watkins K E, Ferris B, Borning A, et al.(2011). Where Is My Bus? Impact of mobile real-time information on the perceived and actual wait time of transit riders[J]. Transportation Research Part A: Policy and Practice 45(8): 839-848.
. Grotenhuis J W, Wiegmans B W, Rietveld P.(2007). The desired quality of integrated multimodal travel information in public transport: Customer needs for time and effort savings[J]. Transport Policy 14(1): 27-38.
. Newell G F.(1971). Dispatching policies for a transportation route[J]. Transportation Science 5(1): 91-105.
. Osuna E E, Newell G F.(1972). Control strategies for an idealized public transportation system[J]. Transportation Science 6(1): 52-72.
. Newell G F.(1973). Scheduling, location, transportation, and continuum mechanics: some simple appr
Guest Editor: Eleonora Papadimitriou, PhD
Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD
Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal