Let's Connect
Follow Us
Watch Us
(+385) 1 2380 262
journal.prometfpz.unizg.hr
Promet - Traffic&Transportation journal

Accelerating Discoveries in Traffic Science

Accelerating Discoveries in Traffic Science

PUBLISHED
30.08.2018
LICENSE
Copyright (c) 2024 Zhao Liu, Jianhua Guo, Jinde Cao, Yun Wei, Wei Huang

A Hybrid Short-term Traffic Flow Forecasting Method Based on Neural Networks Combined with K-Nearest Neighbor

Authors:

Zhao Liu
Southeast University

Jianhua Guo
Southeast University

Jinde Cao
Southeast University

Yun Wei
Beijing Urban Construction Design and Development Group Co., Ltd

Wei Huang
Southeast University

Keywords:short-term traffic flow forecasting, neural networks, K-nearest neighbor, traffic pattern

Abstract

It is critical to implement accurate short-term traffic forecasting in traffic management and control applications. This paper proposes a hybrid forecasting method based on neural networks combined with the K-nearest neighbor (K-NN) method for short-term traffic flow forecasting. The procedure of training a neural network model using existing traffic input-output data, i.e., training data, is indispensable for fine-tuning the prediction model. Based on this point, the K-NN method was employed to reconstruct the training data for neural network models while considering the similarity of traffic flow patterns. This was done through collecting the specific state vectors that were closest to the current state vectors from the historical database to enhance the relationship between the inputs and outputs for the neural network models. In this study, we selected four different neural network models, i.e., back-propagation (BP) neural network, radial basis function (RBF) neural network, generalized regression (GR) neural network, and Elman neural network, all of which have been widely applied for short-term traffic forecasting. Using real world traffic data, the  experimental results primarily show that the BP and GR neural networks combined with the K-NN method have better prediction performance, and both are sensitive to the size of the training data. Secondly, the forecast accuracies of the RBF and Elman neural networks combined with the K-NN method both remain fairly stable with the increasing size of the training data. In summary, the proposed hybrid forecasting  approach outperforms the conventional forecasting models, facilitating the implementation of short-term  traffic forecasting in traffic management and control applications.

References

  1. Smith BL, Williams BM, Oswald RK. Comparison of parametric and nonparametric models for traffic flow forecasting. Transportation Research Part C: Emerging Technologies. 2002 Aug; 10(4): 303-321.

    Yoon B, Chang H. Potentialities of data-driven nonparametric regression in urban signalized traffic flow forecasting. Journal of Transportation Engineering. 2014 Apr;140(7): 04014027.

    Smith BL, Ulmer JM. Freeway traffic flow rate measurement: Investigation into impact of measurement time interval. Journal of Transportation Engineering. 2003 MAY-JUNE; 129(3):223-229.

    Guo J, Williams BM, Smith B. Data collection time intervals for stochastic short-term traffic flow forecasting. Transportation Research Record: Journal of the Transportation Research Board. 2008 Jan; 2024:18-26.

    Williams B, Durvasula P, Brown D. Urban freeway traffic flow prediction: application of seasonal autoregressive integrated moving average and exponential smoothing models. Transportation Research Record: Journal of the Tr

Show more
How to Cite
Liu, Z. (et al.) 2018. A Hybrid Short-term Traffic Flow Forecasting Method Based on Neural Networks Combined with K-Nearest Neighbor. Traffic&Transportation Journal. 30, 4 (Aug. 2018), 445-456. DOI: https://doi.org/10.7307/ptt.v30i4.2651.

SPECIAL ISSUE IS OUT

Guest Editor: Eleonora Papadimitriou, PhD

Editors: Marko Matulin, PhD, Dario Babić, PhD, Marko Ševrović, PhD


Accelerating Discoveries in Traffic Science |
2024 © Promet - Traffic&Transportation journal